Grant MacEwan University

STAT 151 – Formula Sheet – Final Exam Dr. Karen Buro

Descriptive Statistics

- Sample Variance: $s^2 = \frac{\sum_{i=1}^n (x_i \bar{x})^2}{n-1} = \frac{\sum_{i=1}^n x_i^2 \frac{(\sum_{i=1}^n x_i)^2}{n}}{n-1}$
- Sample Standard Deviation: $s = \sqrt{\text{Sample Variance}} = \sqrt{s^2}$
- Median: Order the data from smallest to largest. The median M is either the unique middle value or the mean of the two middle values.
- Lower Quartile: Order the data from smallest to largest. The lower quartile Q_1 is the median of the smaller half of the values.
- Upper Quartile: Order the data from smallest to largest. The upper quartile Q_3 is the median of the upper half of the values.
- Interquartile Range (iqr) = Upper Quartile Lower Quartile $=Q_3 Q_1$
- Outliers: lower fence $=Q_1 1.5iqr$ and upper fence $=Q_3 + 1.5iqr$

Probability Theory

- Addition Rule: P(A or B) = P(A) + P(B) P(A&B)
- Complement Rule: P(A does not occur) = P(not A) = 1 P(A)
- Multiplication Rule: P(A&B) = P(A|B)P(B)
- Multiplication Rule for **Independent** Events: If A and B are **independent**, then P(A&B) = P(A)P(B)
- Conditional Probability of A given B, if P(B) > 0: $P(A|B) = \frac{P(A\&B)}{P(B)}$

Population Distributions

- The mean (expected value) of a discrete random variable: $\mu = \sum x p(x)$.
- The variance of a discrete random variable: $\sigma^2 = \sum (x \mu)^2 p(x)$
- The standard deviation of a discrete random variable: $\sigma=\sqrt{\sigma^2}$

Binomial Distribution

• Probability to observe k successes in n trials: $p(k) = P(x = k) = {n \choose k} p^k (1-p)^{n-k}$

•
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Mean and standard deviation of a binomial distribution: $\mu = np$ and $\sigma = \sqrt{np(1-p)}$

Sampling Distributions

• Sampling Distribution of a Sample Mean, \bar{x} :

$$\mu_{\bar{x}} = \mu, \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

• Sampling Distribution of the difference of two Sample Means, $\bar{x}_1 - \bar{x}_2$:

$$\mu_{\bar{x}_1-\bar{x}_2} = \mu_1 - \mu_2, \ \ \sigma_{\bar{x}_1-\bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

• Sampling Distribution of a Sample Proportion, $\hat{p}:$

$$\mu_{\hat{p}} = p, \quad \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

• Sampling Distribution of the difference of two Sample Proportions, $\hat{p}_1 - \hat{p}_2$:

$$\mu_{\hat{p}_1-\hat{p}_2} = p_1 - p_2, \ \ \sigma_{\hat{p}_1-\hat{p}_2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Estimation

Parameter	Estimator	SE(Estimator)	Approximate Confidence Interval
μ	$ar{x}$	$rac{\sigma}{\sqrt{n}}$	$\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$
p	\hat{p}	$\sqrt{\frac{p(1-p)}{n}}$	$\hat{p} \pm z_{lpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{n}}$
$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}$	$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
$\mu_1 - \mu_2$	\bar{x}_d	$rac{\sigma_d}{\sqrt{n}}$	$\bar{x_d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$
$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$	$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$

Choosing the Sample Size (formulas)

• Estimate a mean μ with a $(1 - \alpha)$ confidence interval within an amount of m.

$$n \ge \left(\frac{z_{(1-\alpha/2)}\sigma}{m}\right)^2$$

• Estimate a proportion p with a $(1 - \alpha)$ confidence interval within an amount of m.

$$n \ge \left(\frac{z_{(1-\alpha/2)}}{m}\right)^2 p(1-p)$$

Test Statistics

• Test Statistic for large sample z-Test concerning p

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

• Test Statistic for Large-Sample z Test for comparing p_1 and p_2 :

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_c(1-\hat{p}_c)}{n_1} + \frac{\hat{p}_c(1-\hat{p}_c)}{n_2}}}, \text{ with } \hat{p}_c = \frac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$$

• Test Statistic for 1-sample t-Test concerning μ if σ is unknown

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \qquad df = n - 1$$

• Test Statistic for two–sample *t*-Test for comparing two population means:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}, \quad df = \min(n_1 - 1, n_2 - 1)$$

• Test Statistic for paired t-Test for comparing two population means:

$$t = \frac{\bar{x}_d}{(s_d/\sqrt{n})} \qquad df = n - 1$$

Goodness-of-Fit Tests and Test for Independence of two categorical variables

• Test Statistic for Goodness-of-Fit Test:

$$\chi^2 = \sum_{\text{all categories}} \frac{(\text{observed count} - \text{expected count})^2}{\text{expected count}}$$

Expected cell count = $n \cdot (hypothesized value of corresponding population proportion)$ df = k - 1 where k is the number of categories.

• χ^2 Test for Independence: The test statistic is

$$\chi^2 = \sum_{\text{all cells}} \frac{(\text{observed count} - \text{expected count})^2}{\text{expected count}}$$

Expected cell count =
$$\frac{(\text{row total})(\text{column total})}{\text{grand total}}$$
$$df = (\text{number of rows - 1})(\text{number of columns - 1})$$

Regression Analysis

• Sum of Squares

$$SS_{xy} = \sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}, \quad SS_{xx} = \sum x_i^2 - \frac{(\sum x_i)^2}{n}, \quad SS_{yy} = \sum y_i^2 - \frac{(\sum y_i)^2}{n}$$

• Correlation Coefficient (r), Coefficient of Determination (R^2)

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}}, \quad R^2 = r^2$$

• Least Squares Regression line $\hat{y} = b_0 + b_1 x$, with

$$b_1 = \frac{SS_{xy}}{SS_{xx}}$$
, and $b_0 = \bar{y} - b_1 \bar{x}$

• Estimation of σ

$$s_e = \sqrt{\frac{SSE}{n-2}}$$
, with $SSE = \sum (\hat{y}_i - y_i)^2 = SS_{yy} - b_1 SS_{xy}$

• Confidence interval for β_1

$$b_1 \pm t^* \frac{s_e}{\sqrt{SS_{xx}}}$$

• test statistic for a test about β_1

$$t_0 = \frac{b_1}{s_e/\sqrt{SS_{xx}}}, \quad df = n - 2$$

• Confidence interval for the mean of y, E(y), at $x = x_p$

$$\hat{y} \pm t^* \ s_e \ \sqrt{\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}$$

• Prediction Interval for y at $x = x_p$

$$\hat{y} \pm t^* \ s_e \ \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}$$

The Analysis of Variance (ANOVA)

• Total Sum of Squares

$$SST = \sum_{ij} (x_{ij} - \bar{x})^2 = \sum_{ij} x_{ij}^2 - CM \quad (df = n - 1)$$

with \bar{x} = sample mean of all measurements, $G = \sum_{ij} x_{ij}$ and $CM = \frac{G^2}{n}$

• Sum of Squares for groups

$$SSTR = \sum_{i} n_i (\bar{x}_i - \bar{x})^2 = \sum_{i} \frac{T_i^2}{n_i} - CM \quad (df = k - 1)$$

with \bar{x}_i = sample mean of observations in sample i, T_i = Total of observations in sample i.

• Sum of Squares for Error

$$SSE = \sum_{i} (n_i - 1)s_i^2 = SST - SSG \quad (df = n - k)$$

with s_i is the standard deviation of observation from sample i.

• ANOVA–Table

Source	df	SS	MS = SS/df	F
Treatments/Groups	k-1	SSTR	MSTR = SSTR/(k-1)	MSTR/MSE
Error	n-k	SSE	MSE = SSE/(n-k)	
Total	n-1	SST		