
0.1 Linear Transformations

A function is a rule that assigns a value from a set B for each element in a set A.
Notation: f : A 7→ B
If the value b ∈ B is assigned to value a ∈ A, then write f(a) = b, b is called the image of a under f .
A is called the domain of f and B is called the codomain.
The subset of B consisting of all possible values of f as a varies in the domain is called the range of
f .

Definition 1
Two functions f1 and f2 are called equal, if their domains are equal and

f1(a) = f2(a) for all a in the domain

Example 1
function example description
f(x) f(x) = x− 2 Function from R to R
f(x, y) f(x, y) = x + y Function from R2 to R
f(x, y, z) f(x, y, z) = x + y + z Function from R3 to R
f(x, y, z) f(x, y, z) = (x + y, z) Function from R3 to R2

Functions from Rn to Rm If f : Rn 7→ Rm, then f is called a map or a transformation.
If m = n, then f is called an operator on Rn.
Let f1, f2, . . . fm functions from Rn to R, assume

f1(x1, x2, . . . , xn) = w1

f2(x1, x2, . . . , xn) = w2
...

fm(x1, x2, . . . , xn) = wm

then the point (w1, w2, . . . , wm) ∈ Rm is assigned to (x1, x2, . . . , xn) ∈ Rn and thus those functions
define a transformation from Rn to Rm.
Denote the transformation T : Rn 7→ Rm and

T (x1, x2, . . . , xn) = (w1, w2, . . . , wm)

Example 2
f1(x1, x2) = x1 + x2, f2(x1, x2) = x1x2 define an operator T : R2 7→ R2.

T (x1, x2) = (x1 + x2, x1x2)

Linear Transformations In the special case where the functions f1, f2, . . . , fm are linear , the
transformation T : Rn 7→ Rm is called a linear transformation.
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A linear transformation is defined by equations

a11x1 + a12x2 + . . . + a1nxn = w1

a21x1 + a22x2 + . . . + a2nxn = w2
...

...
...

...
am1x1 + am2x2 + . . . + amnxn = wm

or in matrix notation 


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn







x1

x2
...

xn


 =




w1

w2
...

wm




or
Ax = w

The matrix A is called the standard matrix for the linear transformation T , and T is called multipli-
cation by A.

Remark:
Through this discussion we showed that a linear transformation from Rn to Rm correspond to matrices
of size m× n.
One can say that to each matrix A there corresponds a linear transformation T : Rn 7→ Rm, and to
each linear T : Rn 7→ Rm transformation there corresponds an m× n matrix A.

Example 3
Let T : R3 7→ R2 defined by

2x1 + 3x2 + (−1)x3 = w1

x1 + x2 + (−1)x3 = w2

can be expressed in matrix form as

[
2 3 −1
1 1 −1

] 


x1

x2

x3


 =

[
w1

w2

]

The standard matrix for T is [
2 3 −1
1 1 −1

]

The image of a point (x1, x2, x3) can be found by using the defining equations or by matrix multipli-
cation.

T (1, 2, 0) =

[
2 3 −1
1 1 −1

] 


1
2
0


 =

[
8
3

]
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Notation:
If T : Rn 7→ Rm is a multiplication by A, and if it important to emphasize the standard matrix then
we shall denote the transformation by TA : Rn 7→ Rm. Thus

TA(x) = Ax

Since linear transformations can be identified with their standard matrices we will use [T ] as symbol
for the standard matrix for T : Rn 7→ Rm.

T (x) = [T ]x or [TA] = A

Geometry of linear Transformations
A linear transformation T : Rn 7→ Rm transforms points in Rn into new points in Rm

Example 4
Zero Transformation The zero transformation from T0 : Rn 7→ Rm has standard matrix 0, so that

T0(x) = 0

for all x ∈ Rn

Example 5
Identity Transformation The identity transformation TI : Rn 7→ Rm has standard matrix In (n×n
identity matrix), so that

TI(x) = Inx = x

for all x ∈ Rn.

Among the more important transformations are those that cause reflections, projections, and rota-
tions

Example 6
Reflections
Consider T : R2 7→ R2 with standard matrix

[ −1 0
0 1

]

then

T (x) =

[ −1 0
0 1

]
x =

[ −x1

x2

]

T reflects points (x1, x2) about the y-axis.
What might be the standard matrix of the linear transformation reflecting point about the x-axis?

R2 7→ R2
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Operator Equation Standard matrix

Reflection about the y-axis T (x, y) = (−x, y)

[ −1 0
0 1

]

Reflection about the x-axis T (x, y) = (x,−y)

[
1 0
0 −1

]

Reflection about the line y = x T (x, y) = (y, x)

[
0 1
1 0

]

R3 7→ R3

Operator Equation Standard matrix

Reflection about the xy-plane T (x, y, z) = (x, y,−z)




1 0 0
0 1 0
0 0 −1




Reflection about the xz-plane T (x, y, z) = (x,−y, z)




1 0 0
0 −1 0
0 0 1




Reflection about the yz-planes T (x, y, z) = (−x, y, z)



−1 0 0
0 1 0
0 0 1




Example 7
Projections Consider T : R2 7→ R2 with standard matrix[

1 0
0 0

]

then

T (x) =

[
1 0
0 0

]
x =

[
x1

0

]

It gives the orthogonal projection of point (x, y) onto the x-axis.

Consider T : R3 7→ R3 with standard matrix


1 0 0
0 1 0
0 0 0




then

T (x) =




1 0 0
0 1 0
0 0 0


x =




x1

x2

0




It gives the orthogonal projection of a point (x, y, z) onto the xy-plane.
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Example 8
Rotation:
An operator that rotates a vector in R2 through a given angle θ is called a rotation operator in R2.

TR(x) = (x cos θ − y sin θ, x sin θ + y cos θ)

The standard matrix of a rotation operator in R2 for angle θ is therefore

[TR] =

[
cos θ − sin θ
sin θ cos θ

]

Proof:

Let (w1, w2) = TR(x), then (check the diagram)

w1 = r cos(θ + ϕ), w2 = r sin(θ + ϕ)
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Using trigonometric identities

w1 = r cos(θ) cos(ϕ)− r sin(θ) sin(ϕ)
w2 = r sin(θ) cos(ϕ) + r cos(θ) sin(ϕ)

Also (check diagram)
x = r cos ϕ, y = r sin ϕ

substituting the later into the equations above gives

w1 = x cos(θ)− y sin(θ), w2 = x sin(θ) + y cos(θ)

therefore

TR(x, y) =

[
w1

w2

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]

Example 9
The standard matrix of the rotation by π/2 is

[TR] =

[
0 −1
1 0

]

therefore

TR(1, 2) =

[ −2
1

]

The standard matrix of the rotation by π/4 is

[TR] =

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]

therefore

TR(1, 2) =

[ −1/
√

2

3/
√

2

]

Rotation in R3

Operator Equation Standard matrix

Counterclockwise rotation
about the positive x-axis
through an angle θ

T (x, y, z) =




x
y cos θ − z sin θ
y sin θ + z cos θ







1 0 0
0 cos θ − sin θ
0 sin θ cos θ




Counterclockwise rotation
about the positive y-axis
through an angle θ

T (x, y, z) =




x cos θ + z sin θ
y

−x sin θ + z cos θ







cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ




Counterclockwise rotation
about the positive z-axis
through an angle θ

T (x, y, z) =




x cos θ − y sin θ
x sin θ + y cos θ

z







cos θ − sin θ 0
sin θ cos θ 0

0 0 1



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Dilation and Contraction
This is the operator stretching or shrinking a vector by a factor k, but keeping the direction un-
changed. We call the operator a dilation if the transformed vector is at least as long as the original
vector, and a contraction if the transformed vector is at most as long as the original vector.

Operator Equation Standard matrix

Contraction with factor k
on R2, 0 6 k 6 1)

T (x, y) =

[
kx
ky

] [
k 0
0 k

]

Dilation with factor k
on R2, k > 1)

T (x, y) =

[
kx
ky

] [
k 0
0 k

]

Operator Equation Standard matrix

Contraction with factor k
on R3, 0 6 k 6 1)

T (x, y, z) =




kx
ky
kz







k 0 0
0 k 0
0 0 k




Dilation with factor k
on R3, k > 1)

T (x, y, z) =




kx
ky
kz







k 0 0
0 k 0
0 0 k




Composition of Linear Transformations
Let TA : Rn 7→ Rk and TB : Rk 7→ Rm be linear transformations, then for each x ∈ Rn one can first
compute TA(x), which is a vector in Rk and then one can compute TB(TA(x)), which is a vector in
Rm.
Thus the application of first TA and then of TB is a transformation from Rn to Rm. It is called the
composition of TB with TA. and is denoted as TB ◦ TA (read TB circle TA).

(TB ◦ TA)(x) = TB(TA(x)) = TB(Ax) = B(Ax) = BAx

Therefore the standard matrix of the composition of TB with TA is BA.

TB ◦ TA = TBA

Remark:
This equation points out an important interpretation of the matrix product. Composition of two
linear transformations is equivalent to the multiplication of two matrices.

Example 10
In general: Composition is not commutative.
T1:reflection about y = x, and T2 orthogonal projection onto y
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One can easily generalize the concept to the composition of more than two transformations.
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0.2 Properties of linear Transformations

One-to-One Linear Transformations
Transformations that transform different vectors into different images, that is
If x 6= y therefore T (x) 6= T (y),
are of special interest.
One such example is the rotation by an angle θ in R2.
But the orthogonal projection onto the xy − plane in R3 does not have this property.
T (x1, x2, x3) = (x1, x2, 0), so T (2, 1, 1) = T (2, 1, 45).

Definition 2
A linear transformation T : Rn 7→ Rm is said to be one-to-one, if it is true that

x 6= y ⇒ T (x) 6= T (y)

distinct vectors in Rn are mapped into distinct vectors in Rm.

Conclusion:
If T is one-to-one and w is a vector in the range of T , then there is exactly one vector in Rn with
T (x) = w.

Consider transformations from Rn to Rn, then the standard matrices are square matrices of size
n× n.

Theorem 1
If A is a n × n matrix and TA : Rn 7→ Rn is the multiplication by A, then the following statements
are equivalent

(a) A is invertible

(b) The range of TA is Rn

(c) TA is one-to-one.

Proof:

(a)⇒(b)

(b)⇒(c)

(c)⇒(a)

Application:
The rotation by θ in R2 is one-to-one.
The standard matrix of this operator is

A =

[
cos θ − sin θ
sin θ cos θ

]
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then det(A) = cos2 θ + sin2 θ = 1 6= 0, therefore A is invertible and therefore the rotation operator is
one-to-one.

Show yourself using this criteria that the orthogonal projection in R3 is NOT one-to-one.

Inverse of a one-to-one Operator

Definition 3
If TA : Rn 7→ Rn is a one-to-one operator, then T−1 = TA−1 is called the inverse operator of TA.

Example 11
Let T : R2 7→ R2 with

[T ] =

[
1 −1
−2 0

]

Then
T (x1, x2) = (x1 − x2,−2x1) for (x1, x2) ∈ R2

and since

[T ]−1 =
−1

2

[
0 1
2 1

]

and
T−1(x1, x2) = (−x2/2,−(2x1 + x2)/2).

Theorem 2
Let T : Rn 7→ Rn be a one-to-one operator, then

(a)
T (x) = w ⇔ T−1(w) = x

(b) For x ∈ Rn it is (T ◦ T−1)(x) = x, and (T−1 ◦ T )(x) = x

Proof:

(a) If T : Rn 7→ Rn is a one-to-one operator and T (x) = w, then the standard matrix [T ] is invertible
and

T (x) = w
⇔ [T ]x = w
⇔ [T ]−1[T ]x = [T ]−1w
⇔ Inx = [T ]−1w
⇔ x = [T−1]w
⇔ x = T−1(w)
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(b) If T : Rn 7→ Rn is a one-to-one operator and T (x) = w, then the standard matrix A is invertible
and

T ◦ T−1 = TA ◦ TA−1 = TAA−1 = TI

therefore the claim holds.

Theorem 3
A transformation T : Rn 7→ Rm is linear if and only if the following relationship holds for all vectors
u,v ∈ Rn and c ∈ R.

1. T (u + v) = T (u) + T (v)

2. T (cu) = cT (u)

Example 12
Show that

T (x1, x2) = (x1 − x2,−2x1) for (x1, x2) ∈ R2

is a linear transformation.

(a) Let u,v ∈ R2, then

T (u + v) = (u1 + v1− (u2 + v2),−2(u1 + v1)) = (u1− u2,−2u1) + (v1− v2,−2v1) = T (u) + T (v)

(b)
T (cu) = (cu1 − (cu2)),−2(cu1)) = c(u1 − u2,−2u1) = cT (u)

Both properties hold, therefore T is a linear transformation.

Theorem 4
If T : Rn 7→ Rm is a linear transformation and e1, e2, . . . , en are the the standard basis vectors for
Rn, then the standard matrix for T is

[T ] =
[

T (e1) T (e2) . . . T (en)
]
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Example 13
Let T be the orthogonal projection onto the yz-plane in R3. Then

T (e1) = T







1
0
0





 =




0
0
0


 , T (e2) = T







0
1
0





 =




0
1
0


 , T (e3) = T







0
0
1





 =




0
0
1




and therefore

[T ] =




0 0 0
0 1 0
0 0 1



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