
1 Euclidean Vector Spaces

1.1 Euclidean n-space

In this chapter we will generalize the findings from last chapters for a space with n dimensions, called
n-space.

Definition 1
If n ∈ N\{0}, then an ordered n-tuple is a sequence of n numbers in R: (a1, a2, . . . , an).
The set of all ordered n-tuples is called n-space and is denoted by Rn.

The elements in Rn can be perceived as points or vectors, similar to what we have done in 2- and
3-space. (a1, a2, a3) was used to indicate the components of a vector or the coordinates of a point.

Definition 2

Two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in Rn are called equal if

u1 = v1, u2 = v2, . . . , un = vn

The sum u + v is defined by

u + v = (u1 + v1, u2 + v2, . . . un + vn)

If k ∈ R the scalar multiple of u is defined by

ku = (ku1, ku2, . . . , kun)

These operations are called the standard operations in Rn.

Definition 3

The zero vector 0 in Rn is defined by
0 = (0, 0, . . . , 0)

For u = (u1, u2, . . . , un) ∈ Rn the negative of u is defined by

−u = (−u1,−u2, . . . ,−un)

The difference between two vectors u,v ∈ Rn is defined by

u− v = u + (−v)

Theorem 1
If u,v and w in Rn and k, l ∈ R, then

(a) u + v = v + u

(b) (u + v) + w = u + (v + w)
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(c) u + 0 = u

(d) u + (−u) = 0

(e) k(lu) = (kl)u

(f) k(u + v) = ku + kv

(g) (k + l)u = ku + lu

(h) 1u) = u

This theorem permits us to manipulate equations without writing them in component form.

Definition 4
If u = (u1, u2, . . . , un),v = (v1, v2, . . . , vn) ∈ Rn, then the Euclidean inner product u ·v is defined by

u · v = u1v1 + u2v2 + . . . unvn

Theorem 2
If u,v and w in Rn and k ∈ R, then

(a) u · v = v · u
(b) (u + v) ·w = u ·w + v ·w
(c) (ku) · v = k(u · v)

(d) u · u > 0.

(e) u · u = 0 if and only if u = 0.

Proof:

(d) Let u ∈ Rn then u · u = u2
1 + u2

2 + . . . u2
n, by definition. Since all terms are squares they are

greater or equal than zero, and since the sum of numbers greater or equal than zero is also
greater or equal than zero we found that u · u > 0.

The total can only be zero if each individual term is zero, that is u2
i = 0 for all 1 6 i 6 n, but

this is equivalent to ui = 0 for 1 6 i 6 n, therefore u = 0, which proves (e).

Definition 5
If u ∈ Rn then the Euclidean norm of u is defined by

||u|| = √
u · u

The Euclidean distance between two points u and v is defined as

d(u,v) = ||v − u||
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Theorem 3
Cauchy-Schwarz Inequality in Rn

If u,v ∈ Rn, then
|u · v| 6 ||u|| ||v||

Proof later

Theorem 4
If u,v ∈ Rn, and k ∈ R, then:

(a) ||u|| > 0

(b) ||u|| = 0 if and only if u = 0

(c) ||ku|| = |k| ||u||
(d) ||u + v|| 6 ||u||+ ||v|| (triangle inequality)

Proof

(d) Let u,v ∈ Rn, then

||u + v||2 = (u + v) · (u + v)
= u · u + 2u · v + v · v
= ||u||2 + 2u · v + ||v||2
6 ||u||2 + 2|u · v|+ ||v||2 absolute value
6 ||u||2 + 2||u|| ||v||+ ||v||2 Cauchy − Schwarz
= (||u||+ ||v||)2

Then the triangle inequality follows by taking the square root on both sides.

Theorem 5
If u,v and w in Rn and k ∈ R, then:
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(a) d(u,v) > 0

(b) d(u,v) = 0 if and only if u = v

(c) d(u,v) = d(v,u)

(d) d(u,v) 6 d(u,w) + d(w,v) Triangle inequality

Theorem 6
If u,v ∈ Rn, then:

u · v =
1

4
||u + v||2 − 1

4
||u− v||2

Proof: For bonus marks?

Definition 6
Two vectors u,v ∈ Rn are called orthogonal if u · v = 0.

Motivated by a result in R2 and R3 we find

Theorem 7
Pythagorean Theorem in Rn

If u and v are orthogonal in Rn, then

||u + v||2 = ||u||2 + ||v||2

Proof: Let u,v be orthogonal vectors in Rn , then u · v = 0, therefore

||u + v||2 = (u + v) · (u + v) = ||u||2 + 2(u · v) + ||v||2 = ||u||2 + ||v||2

The dot product and matrix multiplication
Vectors in Rn can be interpreted as 1 × n or n × 1 matrices. We will identify vectors in Rn with
column vectors in matrix notation, that is n× 1 matrices.
In this case the scalar multiplication and addition in the Euclidean space is equivalent to the scalar
multiplication and addition for matrices, respectively.

For the dot product and the matrix multiplication of two vectors u,v ∈ Rn the following relationship
holds:

u · v = uTv = vTu

and therefore for a n× n matrix A

Au · v = vT Au = u · ATv

and
u · Av = vT ATu = ATu · v
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