
1.5 Elementary Matrices and a Method for Finding the Inverse

Definition 1
A n× n matrix is called an elementary matrix if it can be obtained from In by performing a single
elementary row operation

Reminder: Elementary row operations:

1. Multiply a row a by k ∈ R
2. Exchange two rows

3. Add a multiple of one row to another

Theorem 1
If the elementary matrix E results from performing a certain row operation on In and A is a m× n
matrix, then EA is the matrix that results when the same row operation is performed on A.

Proof: Has to be done for each elementary row operation.

Example 1

A =

[
a b
c d

]
, E =

[
0 1
1 0

]

E was obtained from I2 by exchanging the two rows.

EA =

[
0 1
1 0

] [
a b
c d

]
=

[
c d
a b

]

EA is the matrix which results from A by exchanging the two rows. (to be expected according to
the theorem above.)

Theorem 2
Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Theorem 3
If A is a n× n matrix then the following statements are equivalent

1. A is invertible

2. Ax = 0 has only the trivial solution

3. The reduced echelon form of A is In

4. A can be expressed as a product of elementary matrices.
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Proof:
Prove the theorem by proving (a)⇒(b)⇒(c)⇒(d)⇒(a):
(a)⇒(b):
Assume A is invertible and x0 is a solution of Ax = 0, then
Ax0 = 0, multiplying both sides with A−1 gives
(A−1A)x0 = 0 ⇔ Inx0 = 0 ⇔ x0 = 0. Thus x0 = 0 is the only solution of Ax = 0.

(b)⇒(c):
Assume that Ax = 0 only has the trivial solution then the augmented matrix




a11 a12 . . . a1n 0
a21 a22 . . . a2n 0
...

...
...

...
an1 an2 . . . ann 0




can be transformed by Gauss-Jordan elimination, so that the corresponding linear system must be
(this is the only linear system that only has the trivial solution)

x1 = 0
x2 = 0

. . .
...

xn = 0

that is the reduced row echelon form is



1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0




This mean the reduced row echelon form of A is In.

(c)⇒(d):
Assume the reduced row echelon form of A is In. Then In is the resulting matrix from Gauss-Jordan
Elimination for matrix A (let’s say in k steps).
Each of the k transformations in the Gauss-Jordan elimination is equivalent to the multiplication
with an elementary matrix.
Let Ei be the elementary matrix corresponding to the i-th transformation in the Gauss-Jordan
Elimination for matrix A. Then

EkEk−1 · · ·E2E1A = In (1)

By the theorem ?? EkEk−1 · · ·E2E1 is invertible with inverse E−1
1 E−1

2 · · ·E−1
k .

Multiplying above equation on both sides by the inverse from the left we get

(E−1
1 E−1

2 · · ·E−1
k )EkEk−1 · · ·E2E1A = (E−1

1 E−1
2 · · ·E−1

k )In ⇔ A = E−1
1 E−1

2 · · ·E−1
k

Since the inverse of elementary matrices are also elementary matrices, we found that A can be
expressed as a product of elementary matrices.
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(d)⇒(a):
If A can be expressed as a product of elementary matrices, then A can be expressed as a product of
invertible matrices, therefore is invertible (theorem ??).
From this theorem we obtain a method to the inverse of a matrix A.
Multiplying equation 5 from the right by A−1 yields

EkEk−1 · · ·E2E1In = A−1

Therefore, when applying the elementary row operations, that transform A to In, to the matrix In

we obtain A−1.
The following example illustrates how this result can be used to find A−1.

Example 2

1.

A =




1 3 1
1 1 2
2 3 4




Reduce A through elementary row operations to the identity matrix, while applying the same oper-
ations to I3, resulting in A−1.
To do so we set up a matrix

[A|I]
row operations−→ [I|A−1]
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


1 3 1 1 0 0
1 1 2 0 1 0
2 3 4 0 0 1




−(r1) + r2,−2(r1) + r3 →



1 3 1 1 0 0
0 −2 1 −1 1 0
0 −3 2 −2 0 1




−1/2(r2) →



1 3 1 1 0 0
0 1 −1/2 1/2 −1/2 0
0 −3 2 −2 0 1




3(r2) + r3 →



1 3 1 1 0 0
0 1 −1/2 1/2 −1/2 0
0 0 1/2 −1/2 −3/2 1




2(r3) →



1 3 1 1 0 0
0 1 −1/2 1/2 −1/2 0
0 0 1 −1 −3 2




1/2(r3) + r2,−(r3) + r1 →



1 3 0 2 3 −2
0 1 0 0 −2 1
0 0 1 −1 −3 2




−3(r2) + r1 →



1 0 0 2 9 −5
0 1 0 0 −2 1
0 0 1 −1 −3 2




The inverse of A is

A−1 =




2 9 −5
0 −2 1

−1 −3 2




2. Consider the matrix [
2 −4
1 −2

]

Setup [A|I] and transform [
1 −3 1 0
2 −6 0 1

]

−2(r1) + r2 →
[

1 −3 1 0
0 0 −2 1

]

The last row is a zero row, indicating that A can not be transformed into I2 by elementary row
operation, according to theorem ??, A must be singular, i.e. A is not invertible and has no inverse.
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1.6 Results of Linear Systems and Invertibility

Theorem 4
Every system of linear equations has no solution, exactly one solution, or infinitely many solutions.

Proof:
If Ax = b is a linear system, then it can have no solution, this we saw in examples.
So all we need to show is that, if the linear system has two different solutions then it has to have
infinitely many solutions.
Assume x1,x2,x1 6= x2 are two different solutions of Ax = b ,
therefore Ax1 = b and Ax2 = b.
Let k ∈ R, then I claim x1 + k(x1 − x2) is also a solution of Ax = b. To show that this is true that
A(x1 + k(x1 − x2)) = b.
Calculate

A(x1 + k(x1 − x2)) = Ax1 + kA(x1 − x2)
= b + kAx1 − kAx2

= b + kb− kb
= b

Theorem 5
If A is an invertible n×n matrix, then for each n× 1 vector b, the linear system Ax = b has exactly
one solution, namely x = A−1b.

Proof:
First show that x = A−1b is a solution Calculate

Ax = AA−1b
= Ib = b

Now we have to show that if there is any solution it must be A−1b.
Assume x0 is a solution, then

Ax0 = b
⇔ A−1Ax0 = A−1b
⇔ x0 = A−1b

We proved, that if x0 is a solution then it must be A−1x0, which concludes the proof.

Example 3
Let us solve

A =
1x1 + 3x2 + x3 = 4
1x1 + 1x2 + 2x3 = 2
2x1 + 3x2 + 4x3 = 1

Then the coefficient matrix is

A =




1 3 1
1 1 2
2 3 4



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with (see example above)

A−1 =




2 9 −5
0 −2 1

−1 −3 2




Then the solution of above linear system is

x = A−1b =




2 9 −5
0 −2 1

−1 −3 2







4
2
1


 =




2(4) + 9(2)− 5(1)
0(4)− 2(2) + 1(1)

−1(4)− 3(2) + 2(1)


 =




21
−3
−8




Theorem 6
Let A be a square matrix.

(a) If B is a square matrix with BA = I, then B = A−1

(b) If B is a square matrix with AB = I, then B = A−1

Proof: Assume BA = I.
First show, that A is invertible. According to the equivalence theorem, we only have to show that
Ax = 0 has only the trivial solution, then A must be invertible.

Ax = 0
⇔ BAx = B0
⇔ Ix = 0
⇔ x = 0

Therefor if x is a solution then x = 0, thus the linear system has only the trivial solution, and A
must be invertible.
To show that B = A−1

BA = I
⇔ BAA−1 = IA−1

⇔ B = A−1

So B = A−1 which concludes the proof for part (a), try (b) by yourself.
Extend the equivalence theorem

Theorem 7

(a) A is invertible

(b) For every n× 1 vector b the linear system Ax = b is consistent.

(c) For every n× 1 vector b the linear system Ax = b has exactly one solution.

Proof:
Show (a)⇒ (c) ⇒ (b) ⇒ (a)
(a)⇒ (c): This we proved above.
(c)⇒ (b): If the linear system has exactly one solution for all n× 1 vector b, then it has at least one
solution. Thus (b) holds.
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(b) ⇒ (a): Assume for every n× 1 vector b the linear system Ax = b has at least one solution.
Then let x1 be a solution of

Ax =




1
0
...
0




and x2 be a solution of

Ax =




0
1
0
...
0




choose x3, . . . ,xn similar.
Then let

C = [x1|x2| · · · |xn]

Then

AC =







1
0
0
...
0







0
1
0
...
0




. . .




0
0
0
...
1







= In

According to theorem above then A is invertible, thus (a) holds.

Example 4
One common problem that arises is the following:
Given that we have a matrix A, what are the vectors b, so that Ax = b has a solution.
Let

A =

[
1 1
1 −2

]

then we are asking for which values of b1, b2 does the linear system

x1 + 1x2 = b1

x1 +−2x2 = b2

have a solution?
Use Gaussian Elimination to give the answer. The augmented matrix is

[
1 1 b1

1 −2 b2

]
r2−r1→

[
1 1 b1

0 −3 b2 − b1

]
−1/3(r2)→

[
1 1 b1

0 1 −(1/3)b2 + (1/3)b1)

]
r1−r2→

[
1 0 (2/3)b1 + (1/3)b2

0 1 −(1/3)b2 + (1/3)b1)

]

From this we conclude, that for any b1, b2 the linear system has a solution, which is x1 = (2/3)b1 +
(1/3)b2, x2 = −(1/3)b2 + (1/3)b1)
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1.7 Special Matrices

Definition 2
A square matrix A is called diagonal, iff all entries NOT on the main diagonal are 0, i.e. for all
i 6= j : aij = 0.

Example 5

1.

A =




51 0 0
0 1 0
0 0 −4




is diagonal. The inverse is

A−1 =




1/51 0 0
0 1 0
0 0 −1/4




The inverse of a diagonal matrix is also diagonal, with entries (A−1)ii = 1/(A)ii on the diagonal.

Ak =




512 0 0
0 1k 0
0 0 (−4)k




The power of a diagonal matrix is also a diagonal matrix, with entries (Ak)ii = ((A)ii)
k on the

diagonal.

Definition 3

A square matrix A is called an upper triangular matrix, if all entries below the main diagonal are
zero, i.e. for i > j : aij = 0.

A square matrix A is called a lower triangular matrix, if all entries above the main diagonal are zero,
i.e. for i < j : aij = 0.

Theorem 8

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper
triangular matrix is lower triangular.

(b) The product of lower(upper) triangular matrices is lower(upper) triangular.

(c) A triangular matrix is invertible, iff all diagonal entries are nonzero.

(d) The inverse of an invertible lower(upper) triangular matrix is lower(upper) triangular.
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Example 6
Consider the following matrices

A =




1 5 3
0 2 2
0 0 −1


 , B =




1 2 1
0 0 2
0 0 −1




then A is invertible, because all diagonal entries are not zero, but B is not invertible b22 = 0.
Calculate

AB =




1 2 8
0 0 2
0 0 1




which is like predicted by the last theorem upper triangular.

Definition 4
A square matrix is called symmetric iff A = AT , or aij = aji.

Example 7

A =




1 5 3
5 2 2
3 2 −1




is symmetric.

Theorem 9
If A and B are symmetric matrices of the same size, and k ∈ R, then:

(a) AT is symmetric.

(b) A + B is symmetric

(c) kA is symmetric.

Proof:

(a) Since AT = A and A is symmetric so must be AT .

(b) (A + B)ji = (A)ji + (B)ji = (A)ij + (B)ij = (A + B)ij, so A + B is symmetric.

(c) similar to (b).

Remark: Usually AB is not symmetric, even if A and B are symmetric. But if the matrices
commute, i.e. AB = BA, then AB is a symmetric matrix.

Theorem 10
If A is an invertible symmetric matrix, then A−1 is also symmetric.
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Proof:
Assume A is invertible and A = AT , then (A−1)T theorem before

= (AT )−1 = A−1, so A−1 is symmetric.

Remark: In many situations for a m×n matrix A the matrices AT A and AAT are of interest. AT A
is a n× n matrix and AAT is a m×m matrix. Both are symmetric, because

(AT A)T = AT (AT )T = AT A

similar for AAT

Example 8
Let

A =

[
1 5 −3
5 −2 2

]

then

AAT =

[
1 5 −3
5 −2 2

] 


1 5
5 −2

−3 2


 =

[
35 −11

−11 33

]

and

AT A =




1 5
5 −2

−3 2




[
1 5 −3
5 −2 2

]
=




26 −5 7
−5 29 −19

7 −19 13




Theorem 11
If A is invertible then AT A and AAT are also invertible

Proof: Since A is invertible, then AT is also invertible, because a product of invertible matrices is
invertible we conclude that AAT and AT A must also be invertible.
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