
0.1 Dot Product and Projections

Definition 1
Let u and v be two vectors, assume that both vector have been positioned to have the same initial
point, then the angle between u and v is the angle θ determined by u and v that satisfies 0 6 θ 6 π.

Definition 2
Let u and v be two vectors and θ the angle between u and v, then the dot product or Euclidean
inner product, u · v, is defined by

u · v =

{ ||u|| ||v||cos(θ) if u 6= 0 and v 6= 0
0 if u = 0 or v = 0

θ out of
360o 2π cos(θ) 360o 2π cos(θ)

0o 0
√

4/2 = 1 120o 2π/3 −√1/2 = −1/2

30o π/6
√

3/2 135o 3π/4 −√2/2

45o π/4
√

2/2 150o 5π/6 −√3/2

60o π/3
√

1/2 = 1/2 180o π −√4/2 = −1

90o π/2
√

0/2 = 0

Example 1
The dot product of vector u = (0, 1) and v = (1, 1) is

u · v = ||u|| ||v|| cos(45o) =
√

1
√

2

√
2

2
= 1

1



Component form of dot product
From the cosine law, we get

||−→PQ|| = ||u||2 + ||v||2 − 2||u|| ||v||cos(θ)

Since
−→
PQ = v − u, we get

u · v = ||u|| ||v||cos(θ)
= 1

2
(||u||2 + ||v||2 + ||v − u||2)

= 1
2
(u2

1 + u2
2 + v2

1 + v2
2 + (v1 − u1)

2 + (v2 − u2)
2 + (v3 − u3)

2)

= 1
2
(2u1v1 + 2u2v2 + 2u3v3)

= u1v1 + u2v2 + u3v3

(Remember, how this relates to matrix multiplication: The dot product is the same as uvT (cool?))
We get

cosθ =
u · v

||u|| ||v||
Example 2
Example find angle between two vectors
Consider vectors u = (2, 0, 2) and v = (1, 1, 1), then for θ we get

cosθ =
u · v

||u|| ||v|| =
(2)(1) + (0)(1) + (2)(1)√

8
√

3
=

4

2
√

6
= 0.816

i.e. θ ≈ 35.26o

Theorem 1
Let u and v be vector in 2- or 3-space

(a) v · v = ||v||2

(b) If u and v are non zero and θ is the angle between the two vectors then

θ is acute if and only if u · v > 0

θ is obtuse if and only if u · v < 0

θ = π/2 if and only if u · v = 0

Example 3
Let u = (−1, 3) and v = (3, 1), then u · v = (−1)3 + (3)(1) = 0, the two vectors are orthogonal.

2



Two vector that are perpendicular are also called orthogonal

Theorem 2
Two nonzero vector u and v are orthogonal if and only if u · v = 0

Example 4
In 2-space the nonzero vector n = (a, b) is orthogonal to the line given by ax + by + c = 0.
To prove this claim, let P1(x1, y1) and P2(x2, y2) be distinct points on the line, therefore

ax1 + by1 + c = 0 ⇔ ax1 + by1 = −c

ax2 + by2 + c = 0 ⇔ ax2 + by2 = −c

Since
−−→
P1P2(x2 − x1, y2 − y1) is on the line we need to prove that n · −−→P1P2 = 0.

n · −−→P1P2 = (a, b) · (x2 − x1, y2 − y1)

= a(x2 − x1) + b(y2 − y1)

= ax2 + by2 − (ax1 + by1) (see above)

= −c− (−c)

= 0

therefore the vectors n and
−−→
P1P2 are orthogonal, therefore n and the line given by ax + by + c = 0

are orthogonal.

Theorem 3
If u,v and w are vectors, and k ∈ R, then

(a) u · v = v · u
(b) u · (v + w) = u · v + u ·w
(c) k(u · v) = (ku) · v = u · (kv)

(d) If v 6= 0 then v · v > 0, and if v = 0, then v · v = 0

Proof: Do it yourself.
Orthogonal Projection
Many problems can be solved analyzing a vector u into two terms, one parallel to another vector a
and the second being orthogonal to a.
If u and a have the same initial points Q, we can decompose u as follows:
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1. Drop an orthogonal from the terminal point of u on the line through a, construct vector w1

from Q to the point on the line through a.

2. Find w2 = u−w1

The vector w1 is called the orthogonal projection of u on a, or the vector component of u along a.
Denotation

projau

and w2 is called the vector component of u orthogonal to a.
It is always true that

u = w1 + w2

Theorem 4
If u and a are vectors, then the projection of u on a is

projau =
u · a
||a||2 a

and the vector component of u orthogonal to a is

u− projau = u− u · a
||a||2 a

Proof: (see text book pg 140)

Example 5
Let u = (1, 2,−1) and a = (−2, 3, 0), then the projection of u on a is

projau =
1(−2) + 2(3) + (−1)0

((−2)2 + 32 + 02)
(−2, 3, 0) =

4

13
(−2, 3, 0) = (

−8

13
,
12

13
, 0)

and the vector component of u orthogonal to a is

u− projau = (1, 2,−1)− (
−8

13
,
12

13
, 0) = (

21

13
,
14

13
,−1)
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Theorem 5
For vector u and a

||projau|| = ||u|| |cos(θ)|
if θ is the angle between u and a.

Proof:
Let u and a vectors, and θ is the angle between u and a, then

||projau|| =

∣∣∣∣
∣∣∣∣
u · a
||a||2 a

∣∣∣∣
∣∣∣∣

=

∣∣∣∣
u · a
||a||2

∣∣∣∣ ||a||

=
|u · a|
||a||2 ||a||

=
|u · a|
||a||

=
| ||u|| ||a|| cos(θ) |

||a||
=

||u|| ||a|| |cos(θ)|
||a||

= ||u|| |cos(θ) |

Example 6
To find the distance D between a point P0(x0, y0) and a line given through ax + by + c = 0, choose
any point Q(x1, y1) on the line, that is any (x1, y1) with

ax1 + by1 + c = 0 or c = −ax1 − by1 (∗)
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We know that n = (a, b) is orthogonal to the line, then

D = ||projn−−→QP0||

(see diagram below)
Therefore we get (see proof of theorem)

D =
|−−→QP0 · n|
||n||

=
|(x0 − x1, y0 − y1) · (a, b)|√

a2 + b2

=
|a(x0 − x1) + b(y0 − y1)|√

a2 + b2

Substituting (∗) into the nominator, we get

D =
|ax0 + by0 + c|√

a2 + b2

Example 7
The distance between the point (1,2) and the line given through x + 2y − 1 = 0 is

D =
|(1)(1) + 2(2) + (−1)|√

1 + 4
=

4√
5
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