
1 Determinants

The determinant of a square matrix is a value in R assigned to the matrix, it characterizes matrices
which are invertible (det 6= 0) and is related to the volume of a parallelpiped described by the matrix.
The determinant can also be used to find the solutions of linear systems and is therefore a helpful
tool in matrix algebra.
The determinant will be defined recursively, i.e. we will first define the determinant for a 2×2 matrix,
then we will define the determinant of a n × n matrix based on determinants of (n − 1) × (n − 1)
matrices. Applying these rules recursively will lead to the determinant.

Definition 1

If A is a 2× 2 matrix

A =

[
a b
c d

]

then the determinant of A is defined by det(A) = |A| = ad− cb.

(Cofactor Expansion along the first row) If A is a square matrix of size n the

det(A) = |A| =
n∑

j=1

a1jC1j

where the cofactor of the entry aij is Cij defined as

Cij = (−1)i+jMij

where the minor of entry aij is Mij, the determinant of the submatrix that remains after the ith row
and jth column are deleted from A

Example 1

(a) Let

A =

[
1 5
5 −2

]

then

det(A) =

∣∣∣∣
1 5
5 −2

∣∣∣∣ = 1(−2)− 5(5) = −27

This was easy because A is a 2× 2 matrix

(b) Let

A =




1 2 3
1 −2 −1

−3 3 1




Then the minor (and cofactor) of a11 is (delete row 1 and column 1)

M11 =

∣∣∣∣
−2 −1

3 1

∣∣∣∣ = −2(1)− 3(−1) = 1, so C11 = (−1)1+1M11 = 1
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The minor (and cofactor) of a12 is (delete row 1 and column 2)

M12 =

∣∣∣∣
1 −1

−3 1

∣∣∣∣ = 1(1)− (−3)(−1) = −2, so C12 = (−1)1+2M12 = (−1)(−2) = 2

The minor (and cofactor) of a13 is (delete row 1 and column 3)

M13 =

∣∣∣∣
1 −2

−3 3

∣∣∣∣ = 1(3)− (−3)(−2) = −3, so C13 = (−1)1+3M13 = −3

With these

det(A) = a11C11 + a12C12 + a13C13 = 1(1) + 2(2) + 3(−3) = 1 + 4− 9 = −4

The definition is based on the cofactor expansion along the first row. One can prove that it is possible
to expand along any row or column

Theorem 1

(a) Expansion along row i

det(A) =
n∑

j=1

aijCij = ai1Ci1 + ai2Ci2 + . . . ainCin

(b) Expansion along column j

det(A) =
n∑

i=1

aijCij = a1jC1j + a2jC2j + . . . anjCnj

no proof.

Example 2
The last theorem allows to make smart choice, when calculating a determinant. Let Let

A =




1 2 3 5
1 −2 −1 0

−3 3 1 0
0 0 6 0




For finding the determinant expansion alon the 4th column looks really easy because

det(A) = 5(−1)1+4

∣∣∣∣∣∣

1 −2 −1
−3 3 1

0 0 6

∣∣∣∣∣∣

all other entries are zero and do not provide any more terms. To find the minor M14 it is easiest to
expand along the third row

det(A) = (−5)(6)(−1)3+3

∣∣∣∣
1 −2

−3 3

∣∣∣∣ = (−5)6(1(3)− (−3)(−2)) = (−5)6(−3) = 90
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Definition 2
If A is a square matrix of size n and Cij is the cofactor of aij, then the matrix




C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn




is called the matrix of cofactors from A.
The adjoint of A, adj(A), is defined to be the transpose of the matrix of cofactors for A.

Example 3
Use A from example 1(b):

A =




1 2 3
1 −2 −1

−3 3 1




then the cofactors of A are
C11 = 1 C12 = 2 C13 = −3
C21 = 7 C22 = 10 C23 = −9
C31 = 4 C32 = 4 C33 = −4

and

adj(A) =




1 7 4
2 10 4

−3 −9 −4




Theorem 2
If A is an invertible matrix then

A−1 =
1

det(A)
adj(A)

Example 4
Use matrix A from example 3, then

A =




1 2 3
1 −2 −1

−3 3 1


 , adj(A) =




1 7 4
2 10 4

−3 −9 −4




and from ex. 1(b), we know det(A) = −4. The last theorem now let us know that

A−1 =
−1

4




1 7 4
2 10 4

−3 −9 −4




Theorem 3
If A is an n× n matrix (upper triangular, lower triangular, or diagonal), then det(A) is the product
of the entries on the diagonal of the matrix, that is

det(A) = a11a22 · · · ann
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Proof:
Expansion along row 1 to row (column) n successively for lower (upper) triangular matrices shows
the result.

Example 5

(a) Let

A =




1 7 4
0 10 4
0 0 −4




then according to the theorem det(A) = 1(10)(−4) = −40. That was easy.

(b) Let

B =




1 7 4
0 10 4
0 0 0




Then det(B) = 0.

In order to take advantage of this property we will see how we can use elementary row operations to
transform a matrix into a upper triangular matrix to find the determinant.

1.1 Row Reductions to Find Determinants

Theorem 4
Let A be a square matrix. If A has a row of zeros or a column of zeros, then det(A) = 0.

Proof: Do cofactor expansion along the row(column) that is all zero and you find that the determi-
nant has to be equal to zero.

Theorem 5
Let A be a square matrix then det(A) = det(AT ).

Proof: The determinant of A can be found by expansion along row 1 this is equal to the cofactor
expansion along column 1 of the transposed matrix..

Theorem 6
Let A be a square matrix of size n.

(a) If B is the matrix that results when a single row(column) of A is multiplied by k ∈ R, then
det(B) = kdet(A).

(b) If B is the matrix that results when two rows or two columns of A are interchanged, then
det(B) = −det(A).

(c) If B is the matrix that results when a multiple of one row(column) of A is added to another
row(column), then det(B) = det(A)
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From this theorem we see the effect of elementary row(column) operations on the determinant, this
will help to find the determinant because now we can transform A into a upper or lower triangular
form, and then easily find the determinant.

Example 6
Find det(A) for

A =




0 2 3
1 −2 −1

−3 3 1




Transform A into row echelon form

det(A) =

∣∣∣∣∣∣

0 2 3
1 −2 −1

−3 3 1

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

1 −2 −1
0 2 3

−3 3 1

∣∣∣∣∣∣
= −

∣∣∣∣∣∣

1 −2 −1
0 2 3
0 −3 −2

∣∣∣∣∣∣

= −2

∣∣∣∣∣∣

1 −2 −1
0 1 3/2
0 −3 −2

∣∣∣∣∣∣
= −2

∣∣∣∣∣∣

1 −2 −1
0 1 3/2
0 0 5/2

∣∣∣∣∣∣
= −2(1)(1)(5/2) = −5

Because of the theorem above we get

Theorem 7

(a) If E results from multiplying a row of In by k ∈ R, then det(E) = k.

(b) If E results from interchanging two rows of In , then det(E) = −1.

(c) If E results from adding a multiple of one row of In to another, then det(E) = 1.

Example 7

(a) ∣∣∣∣∣∣

5 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
= 5,

∣∣∣∣∣∣

0 1 0
1 0 0
0 0 1

∣∣∣∣∣∣
= −1,

∣∣∣∣∣∣

1 0 0
5 1 0
0 0 1

∣∣∣∣∣∣
= 1

Theorem 8
If A is a square matrix with two proportional columns(rows), then det(A) = 0.

Proof:
Using the elementary row operation of subtracting the multiple of one row (column) to another row
(column) will transform A into a matrix with a row (column) of zeros, and this matrix for that reason
has a determinant of zero.
Since this elementary row operation does not change the determinant, the determinant of A must be
0.
The next theorem shows how determinants can be used to find solutions of linear systems.
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Theorem 9
Cramer’s Rule
If Ax = b is a linear system in n unknowns such that det(A) 6= 0, then the system has a unique
solution, which is

x1 =
det(A1)

det(A)
, x2 =

det(A2)

det(A)
, . . . , xn =

det(An)

det(A)

where Aj is the matrix obtained by replacing the entries in column j of A by the entries of the
solution vector

b =




b1

b2
...

bn




Proof:
If det(A) 6= 0 then A is invertible and x = A−1b is the unique solution of the linear system Using
Theorem ?? we get

x = A−1b =
1

det(A)
adj(A)b =

1

det(A)




C11 C21 . . . Cn1

C12 C22 . . . Cn2
...

...
...

C1n C2n . . . Cnn







b1

b2
...

bn




resulting in

x =
1

det(A)




b1C11 + b2C21 + . . . + bnCn1

b1C12 + b2C22 + . . . + bnCn2
...

b1C1n + b2C2n + . . . + bnCnn




so

xj =
b1C1j + b2C2j + . . . + bnCnj

det(A)

If

Aj =




a11 a12 . . . a1j−1 b1 a1j+1 . . . a1n

a21 a22 . . . a2j−1 b2 a1j+1 . . . a2n
...

...
...

...
...

...
an1 an2 . . . anj−1 bn a1j+1 . . . ann




The cofactors of this matrix are equal to the cofactors of A for all entries in column j. I.e. when
calculating the determinant of Aj by expanding along column j, one gets

det(Aj) = b1C1j + b2C2j + . . . + bnCnj

substituting this into the equation above we find

xj =
det(Aj)

det(A)

which concludes the proof.
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Example 8
Cramer’s Rule Assume the following is the augmented matrix of a linear system

[
5 1 2
1 1 3

]

Using Cramer’s Rule we can now give the solution right away:

x1 =
det(A1)

det(A)
=

2(1)− 3(1)

5(1)− 1(1)
=
−1

4
, x2 =

det(A2)

det(A)
=

5(3)− 1(2)

5(1)− 1(1)
=

13

4

1.2 Properties of The Determinant

Theorem 10
Let k ∈ R, and A be a square matrix then

det(kA) = kndet(A)

Example 9
In general det(A + B) 6= det(A) + det(B) Let

A =

[
5 2
1 3

]
, B =

[
1 2
4 −1

]

then

A + B =

[
6 4
5 2

]

and det(A) = 13, det(B) = −9, det(A + B) = −8, so det(A) + det(B) 6= det(A + B)

There following theorem shows, when determinant can be added

Theorem 11
Let A,B, C square matrices of the same size, which only differ in a single row, say the rth row.
Assume that the rth row of C is obtained by adding the corresponding entries in the rth row of A
and B, then

det(C) = det(A) + det(B)

Example 10
Illustrate the previous theorem with this example. Let

A =

[
5 2
1 3

]
, B =

[
5 2
4 −1

]
, C =

[
5 2

1 + 4 3− 1

]

then det(A) = 13, det(B) = −13, det(C) = 0, in this example truly as predicted by the theorem
det(C) = det(A) + det(B).

Theorem 12
A square matrix A is invertible if and only if det(A) 6= 0
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Theorem 13
If A and B are square matrices of the same size then

det(AB) = det(A)det(B)

Theorem 14
If A is an invertible square matrix then

det(A−1) =
1

det(A)

Proof:
Since A−1A = I, therefore det(A−1A) = det(I) = 1, therefore (because of Theorem ??) det(A−1)det(A) =
1, since A is invertible det(A) 6= 0, and we find

det(A−1) =
1

det(A)

1.3 A Combinatorial Approach to Determinants

Observe that by expansion along the first row, we get
∣∣∣∣

a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 − a11a23a32 − a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22

Find that in each term of the determinant there is exactly one entry from each row and each column.
Also find that all possible terms are included with the calculation of the determinant.

This can be used to find the determinant differently than by expansion along a row or column.
Some of the terms are added some are subtracted, in order to determine the signs we will discuss
permutations and their inversions.

Definition 3
A permutation of the numbers {1, 2, . . . , n} is an arrangement of these integers in some order without
omission or repetition.

Example 11
(3, 1, 2) is a permutation of {1, 2, 3}, but
(1, 3, 3) is not a permutation of {1, 2, 3} because 2 is missing and 3 is repeated.

There are n! different permutations of {1, 2, . . . , n}.

Definition 4
Let (j1, j2, . . . , jn} denote a permutation of {1, 2, . . . , n}.
An inversion is said to occur in (j1, j2, . . . , jn), whenever a larger integer precedes a smaller one.
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The number of inversion in the elementary products will determine the sign used in the determinant.
The total number of inversions in (j1, j2, . . . , jn) is best found by

(1) Find the number of integers that are smaller than j1 that follow j1

(2) find the number of integers that are smaller than j2 and follow j2

Continue the counting process for the remaining entries j3, . . . , jn−1.

The sum of these numbers is the total number of inversions in the permutation.

Example 12
(5, 2, 6, 3, 1, 4 has 4+1+3+1+0=9 inversions.
(1, 2, 3) has 0 inversions.

Definition 5
A permutation is called odd(even), if the total number of inversions is an odd(even) integer.

Definition 6
Let A be a square matrix, then an elementary product from A is any product of n entries from A,
where no two come from the same row or column or

a1j1aj2 · · · anjn

where (j1, j2, . . . , jn) is a permutation of {1, 2, . . . , n}.
A signed elementary product is

a1j1aj2 · · · anjn if (j1, j2, . . . , jn) is even
−a1j1aj2 · · · anjn if (j1, j2, . . . , jn) is odd

Theorem 15
Let A be a square matrix, then det(A) is the sum of all signed elementary products

Example 13

1. Let

A =

[
5 2
1 3

]

then
det(A) = 5(3)− 1(2) = 13

the number of inversions for the first term is 0 so, elementary product is even, and the number of
inversions for the second term is 1 the elementary product is odd.

2. Let

A =




5 2 −1
1 3 4

−3 −2 0




Then the elementary products are
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products permutation inversions odd/even
5(3)(0) (1,2,3) 0 even
5(4)(-2) (1,3,2) 1 odd
2(1)(0) (2,1,3) 1 odd
2(4)(-3) (2,3,1) 2 even

(-1)(1)(-2) (3,1,2) 2 even
(-1)(3)(-3) (3,2,1) 3 odd

det(A) = 0− (−40)− 0 + (−24) + 2− 9 = 9

or develop along the last row, then

det(A) = (−1)(−2 + 9)− 4(−10 + 6) = 9
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