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Abstract

Amazons is a perfect information board game with
simple rules and large branching factors. Two play-
ers alternately move chess queen-like pieces and
block squares on a 10×10 playing field. The
player who makes the last move wins. Ama-
zons endgames usually decompose into indepen-
dent subgames. Therefore, the game is a nat-
ural testbed for combinatorial game theory. It
was known that determining the winner of simple
generalized Amazons endgames is NP-equivalent.
This paper presents two proofs for the PSPACE-
completeness of the generalized version of the full
game.

1 Introduction
Amazons is a two-person perfect information board game that
combines elements of chess and Go. Both players start with
four pieces called amazons which are symmetrically posi-
tioned at the edges of an otherwise empty 10 × 10 square
board. Moves consist of picking an amazon of the player’s
colour, moving it like a chess queen, and then shooting an
arrow straight in one of eight directions from the amazon’s
destination square to an empty square. This square becomes
blocked for the remainder of the game and no amazon or ar-
row can pass it. Arrows are not allowed to pass amazons
either and amazons cannot be captured. Blocking squares is
mandatory. The game proceeds in turns and the first player
without any legal move loses. Fig. 1 shows two typical Ama-
zons positions.

The game of Amazons is interesting for AI research for at
least the following reasons:
• Compared with other popular games its rule set is sim-

ple — and yet, it leads to interesting strategic concepts
which need to be addressed when designing evaluation
functions [Lieberum, 2005].

• The number of legal moves in Amazons positions on the
standard board is often in the hundreds or even thou-
sands. This puts pressure on sound backward pruning
search techniques such as the alpha-beta algorithm, be-
cause the number of positions to be searched even at
small depths is astronomical. Amazons can therefore

serve as a testbed for research on selective search and
adversarial planning.

• Like Hex, Go-moku, Tic-Tac-Toe, and Othello, Ama-
zons has the property of being monotonically increasing
(each move blocks one square), so the underlying struc-
ture of the game is a directed acyclic graph, rather than
a general graph. This eliminates some potentially com-
plicating variables for scientific research. Also like Hex,
Amazons cannot end in a draw.

• Endgames regularly decompose into independent sub-
games (Fig 1). At this stage, combinatorial game theory
can be applied to vastly reduce the search space, and thus
speed up good move selection compared with full-board
analyses. Hence, Amazons is a suitable test-domain for
new ideas in this area. See for instance [Berlekamp,
2000; Müller and Tegos, 2002; Snatzke, 2004].

Establishing the computational complexity of various prob-
lems associated with generalized games is also interesting.
For example, proving NP- or PSPACE-hardness is convincing
evidence that a problem does not possess a simple solution in
general (although effective methods may exist for specific in-
stances).

Generalizing the standard Amazons game is straight-
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Figure 1: Typical Amazons positions. On the left, the black
amazon at c7 is about to move to b7 and block e10 to prevent
the white amazon at g8 from entering the SW corner area.
On the right, Black can make 24 unopposed moves, whereas
White can make only 20, so Black can win regardless of who
is to move.



forward: we allow arbitrary square-shaped boards (n × n)
with at least one and up to n2 amazons. It is known that solv-
ing generalized Amazons puzzles (i.e. determining whether
in a single-player Amazons game the player can make at
least k consecutive moves) is NP-complete and determining
the winner of simple generalized Amazons endgames — in
which players do not interact anymore — is NP-equivalent
[Buro, 2000]. In what follows, we present two proofs for
the PSPACE-hardness of deciding the winner of generalized1

Amazons positions. While the first proof is more intuitive,
the second one leads to a stronger results, namely that the
problem remains PSPACE-complete even if each player has
only one amazon.

2 Hex Reduction
In this section we show that determining the winner in Hex
positions, which is known to be PSPACE-complete, can be
reduced to the related Amazons problem. We begin with the
definition of the sets we like to relate to each other:
Definition 1:
• AMAZONS is a set of succinct encodings of all gen-

eralized Amazons positions with a winning strategy for
Black (to move).

• HEX is a set of succinct encodings of all Hex positions
with a winning strategy for Black (to move).

Theorem 1: HEX ≤p AMAZONS.

Corollary 1: AMAZONS is PSPACE-complete.

Proof: [Reisch, 1981] shows that HEX is PSPACE-complete
by reducing QBF to HEX. Moreover, AMAZONS∈
PSPACE, which is obvious by the existence of a depth-first
minimax search algorithm that decides the winner of a given
Amazons position in space polynomial in the length of its en-
coding. Note, that the number of moves in an Amazons game
played on an n × n board is at most n2. 2

Proof of Theorem 1: We describe a function f that maps ar-
bitrary code words w into the encoding of an associated Ama-
zons position with the following properties:

1. If w encodes a Hex position, then the first player (Black)
in decode(w) has a Hex winning strategy if and only if
the first player in decode(f(w)) (Black) has an Amazons
winning strategy.

2. Otherwise, f(w) encodes a fixed Amazons position with
a second player (White) winning strategy.

3. There exists a Turing machine F and a polynomial p
such that for all w, F started on input w computes f(w)
in at most p(|w|) steps.

It follows that w ∈ HEX ⇔ f(w) ∈ AMAZONS and HEX
≤p AMAZONS. We now describe the transformation f .

From a given n × n Hex position, each of the n2 hex tiles
are represented by a rectangular room containing one Black

1We drop “generalized” from now on when the context is clear.
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Figure 2: The arrangement of rooms relative to each other
and the connecting corridors. There is slack space for arrows
in each corridor and at the top and bottom of each room suf-
ficient to allow a large number of amazons to pass through.

and one White amazon (Fig. 2,3). These amazons are placed
across from each other so that each is able to contain the
other in one move, and so gain control of the room. Occu-
pied tiles on the Hex board are represented by removing the
opposing piece. In this way the first stage of the transformed
game is effectively a game of Hex where players alternately
select rooms, blocking the opponent’s amazons. Indeed, if
any player does not take control of a room when such a move
is available then the opposing player may take a room “for
free,” which in Hex (and similarly here) can only help.

The rooms are connected by corridors which require a cer-
tain minimum number of steps to traverse. This traversal time
for each corridor is chosen such that no adjacent rooms may
affect either player from securing a room. Each of the n2

rooms may be sealed off from enemy rooms by blocking off
the appropriate corridors. As there are at most 6 entrances to
each room and each can be blocked in one move, minimum
corridor traversal times of 7n2 are sufficient.

To force the outcome of the Amazons game to be equiv-
alent to that of the initial Hex game, White must win if and
only if he can form a connecting path from top to bottom.
This is accomplished by placing an army of n2 + 2 White
amazons at the bottom of the board with a path to all of the
bottom rooms (Fig. 4). As with adjacent rooms, these ama-
zons are also sufficiently far away that they cannot influence
the initial choosing of rooms.

At the top of the board are 2n2 + 5 strips of open space.
The size of these strips is chosen large enough so that each
is larger than the rest of the board when ignoring the other
strips. This ensures that the outcome of the game is entirely
determined by which player is able to control a majority of the
strips. Strips are positioned such that once a White amazon
has captured one, it is unable to capture any others. At the top
of each strip is a long path connecting to a single Black ama-
zon (Fig. 5). The path is made long enough so that while the
amazon may eventually reach the strip, the number of moves
required to do so is greater than that needed by White to cap-



Figure 3: Sample transformation of a 3 × 3 Hex board.
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Figure 4: White’s army at the bottom of the board. The first
amazon can block off paths to enemy rooms.
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Figure 5: 2n2 +5 large strips of space at the top of the board.
White has a gatekeeper to prevent enemy rooms from reach-
ing them. Black has an amazon at the top of each strip that
will eventually be able to take control of it if White cannot.

ture as many strips as he can. This is the time needed to
decide the control of each room, secure those rooms, and to
move the army from the bottom of the board to each of the
strips. A very loose upper bound for this distance is the num-
ber of free squares in the lower section of the board, every-
thing beneath the strips. In this manner Black is eventually
able to take control of any strips that White cannot.

If the first player (White) has a winning strategy in the ini-
tial Hex position that player may capture a set of rooms such
that a path exists from the bottom of the playfield to the top.
By blocking all corridors to hostile rooms he may isolate this

path from enemy influence. Since there are no draws in Hex,
a winning strategy for the second player is equivalent to pre-
venting White from forming such a sequence of rooms.

If White can form a connecting path then the one White
amazon at the top and the army (of size n2 + 2) at the bottom
may be moved one at a time to take control of n2 + 3 strips,
a majority allowing White to win the game.

If White cannot form a connecting path then the number of
strips he may capture is at most n2 + 1: the number of White
amazons on the board not counting the army. Black will then
eventually be able to take control of the remaining strips with
the amazon at the top of each. This gives Black a majority of
free space allowing him to win. The winner of this game is
therefore the same as for the original Hex position.

The connecting corridors must allow for the entire army to
pass through them. The given structure requires long slack
tunnels so that arrows may be fired while moving. These tun-
nels must be at least as long as the size of the army, n2 + 2.
Not counting the boundary walls, the height of the horizontal
corridors then is 2(n2 + 2) + 5, and the diagonal corridors
one less. Ensuring that the corridors are long enough to pre-
vent room interference is a simple matter of adding additional
bends in the path, with each bend increasing the travel time
by 2. Since each corridor only needs to be 7n2 moves long
constructing this new board is clearly polynomial.

Each room is a rectangle with slack tunnels running
through the middle. This tunnel is easily sufficient with al-
most twice the space of those in the diagonal corridors. Mov-
ing an amazon through a room is straightforward: move to the
center column when entering, then move to the exit row, and
finally into the next corridor. To enter and exit on the same
row simply move straight across. The initial amazon in the
room may be considered as part of the army or moved out of
the way to the side.

Rooms and corridors may clearly be arranged without con-
flict (Fig. 2). The entire transformation takes polynomial time
in the size of the original Hex board. The strategy to move
the army to the top of the board when a connecting series of
rooms exists is then trivial. It is also clearly impossible to do
this when a connecting series of rooms does not exist. 2

3 Geography Reduction
Here we show a stronger result, namely that even if the num-
ber of Amazons is bounded by a constant, the problem re-
mains PSPACE-complete. We again start with definitions of
the sets we consider:

Definition 2:
• AMAZONS-2 is a set of succinct encodings of all

n × n Amazons positions with exactly one Black and
one White amazon and a winning strategy for Black (to
move).

• GEOGRAPHY-BP3 is a set of succinct encodings of
GEOGRAPHY positions — consisting of a directed bi-
partite planar graph, whose node types are shown in
Fig. 7,8,9, and a distinguished start node (Fig. 6) with
two leaving edges — for which the first player has a win-
ning strategy.



Figure 6: Start vertex.

Figure 7: Path vertex.

Figure 8: Branch vertex. Figure 9: Join vertex.

Theorem 2: GEOGRAPHY-BP3 ≤p AMAZONS-2.

Corollary 2: AMAZONS-2 and AMAZONS are PSPACE-
complete.
Proof: Analog to Proof of Corollary 1. Note that
AMAZONS-2 ≤p AMAZONS. 2

Proof of Theorem 2: Geography is a game played by two
players on a given directed graph with a marked start node.
The players alternately put a marker on any unmarked node
from which there exists an edge from the node marked last.
The first player who cannot move loses. Note that in case
of GEOGRAPHY-BP3, the graph is bipartite and planar with
node types that are shown above. The game always ends in
a vertex with two entering edges and one leaving edge at the
second visit of that vertex. [Lichtenstein and Sisper, 1980]
show that GEOGRAPHY-BP3 is PSPACE-complete.

We present a polynomial-time transformation that maps in-
put words — which are now encodings of planar bipartite
graphs with a start marker — into encodings of Amazons po-
sitions with two amazons, such that the first player wins the
geography game if and only if the first player wins the associ-
ated Amazons game. We emulate the Geography game with
two amazons — one for each player — and with blocks that
fill the board with the necessary structure. The structure has
two separate paths for each edge of the given graph. One path
(Fig. 10) is for player one and the other path is for player two.
The two amazons simultaneously proceed along the paths as
quickly as possible, otherwise one player locks up the other
player. We construct the structure such that player one win-
ning in generalized geography is equivalent to the amazon of
player one being able to trap the amazon of player two. We
embed the given directed graph in the board using a pair of
paths to represent an edge. To embed the vertices we use two
gadgets that force the players to proceed along the paths in
pairs and in the same direction as the original directed edges.

Putting a marker on a vertex in GEOGRAPHY-BP3 cor-
responds to the two amazons going from a vertex gadget to
another vertex gadget. Since each vertex gadget can be used
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Figure 10: Path example.

only once, vertices cannot be marked twice. We force the two
amazons to go along the same paths. If one amazon advances
toward a path different from the path chosen by the acting
player (the player placing the marker) then the amazon will
be locked out by the acting player at some gadget.

We implement a path, which has a one-square width, as
blank squares with surrounding blocked squares, as shown in
Fig. 10. We assume an amazon is currently at the left en-
trance a and proceeds to the right exit A. At each player’s
respective turn, the amazon is moved forward and blocks a
square behind it. If the player blocks a square in front of him
the amazon becomes trapped. The amazons need to travel at
maximum speed, otherwise they will be locked out by the op-
ponent’s amazon at some point. In Fig. 10, the amazon needs
at least 12 moves to travel from the entrance to the exit. The
amazon can also get there in 13 moves. We use gadgets that
force the amazons to travel in the minimal numbers of moves
(in this case 12). Thus, amazons have to traverse any straight
line section of a path in one move. If we want to force an
amazon to take several moves, we bend the path an appro-
priate number of times as shown in Fig. 10. Moreover, it is
obvious that we can change the direction a path aims as we
like. We now discuss the sub-gadgets shown in Fig. 11 to 14.

Type 1 top speed gadget (Fig. 11). Assume the amazon
for player X (denoted X) comes to the bottom left entrance,
a, and the amazon for player Y (Y ) comes to the bottom right
entrance, b. This gadget forces Y to come to the entrance as
quickly as possible. That is, if Y comes to the entrance just
after X comes to the entrance (we say that they arrive at the
entrances at the same time in this situation), then X cannot
trap Y and X should exit this gadget at A, and Y should exit
at B. If Y comes to this gadget late then X can lock Y out in
3 moves by moving to E, C, then D and blocking F . Thus
Y should come to the entrance as quickly as possible. If Y
comes to entrance b at the same time X enters, Y can move
to F and block D. Thus, Y cannot be trapped. In this case
both X and Y can exit this gadget in five moves; X’s exit is
A, Y ’s exit is B. Note that if we use two paths to connect this
gadget to a symmetrical one, we can force both X and Y to
move at top speed along those paths.

Type 2 top speed gadget (Fig. 12). If X enters this gadget
from a and Y enters from b (resp. d and c), the gadget forces
X to proceed to exit A and Y to proceed to exit B (resp. D
and C). Otherwise the player being late will be trapped by
the other player. This gadget is somewhat complex, so first
we will simply refer to its functionality. Assume amazon X
comes to the entrance a and amazon Y comes to the entrance
b (resp. d and c). This gadget forces Y to come to the entrance

A B

C D

E F

a b

Figure 11: Top speed gadget (type 1).



as quickly as possible. If Y ’s entrance is b, this is the same as
type 1 top speed gadget, and Y should come to b at the same
time that X enters. If Y ’s entrance is d, this gadget forces Y
to come to d at least before X reaches G, or otherwise Y will
be locked out by X . If Y ’s entrance is c, then even if Y comes
to c at the same time that X enters, X can trap Y . In addition,
if X enters from b (resp. c) and Y enters from c (resp. b), Y
should come to c at the same time that X enters. Otherwise
X can lock Y out. If X’s entrance is a and Y ’s entrance is b,
X is forced to exit at A and Y is forced to exit at B. Amazons
can use the gadget twice, once to enter at a and b and once to
enter at d and c. At the first use of the gadget they cannot put
blocks to obstruct the next use of the gadget.

Now we detail the amazons’ sequence of moves in this gad-
get. First we will describe the moves when X’s entrance is
a and Y ’s entrance is b and they come to the entrance at the
same time. X moves to N , Y moves to Q; X then moves
to G and blocks I , Y moves to O and blocks H . Then they
proceed to their respective exits at top speed. If X blocks a
position other than I , Y can then proceed to other exits. This
increases the number of moves available to Y , so X should
not play this way if he wants to win. Thus we can assume that
X blocks I . If Y blocks a position other than H , X can trap
Y . Thus Y should block H to prevent being locked out. If
X’s entrance is a and Y ’s entrance is c and they arrive at the
entrance at the same time, X moves to N and Y moves to R.
X then moves to G and blocks L, Y moves to P and either
blocks F (option 1) or blocks any other position (option 2).
In the case of (1), X moves to K and blocks M . In the case
of (2), X moves to J and blocks E. In both cases, Y is locked
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Figure 12: Top speed gadget (type 2).

Figure 13: Top speed gadget (type 3).
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Figure 14: Cross gadget.

out by X . We can check the other properties analogously.
Type 3 top speed gadget (Fig. 13). This gadget is almost

identical to the previous gadget. The only difference is the
direction of the right hand side paths which have been mir-
rored.

Cross gadget (Fig. 14). We can cross a path of player X
and a path of player Y with this gadget. Assume the entrance
for X is a, and the entrance for Y is b. If X and Y come to
the gadget at the same time, X is forced to exit the gadget at
A and Y is forced to exit this gadget at B. Both X and Y
take five moves in that case. If X comes later, then X will be
locked out. If Y comes two moves later than X , then Y will
be trapped. Similarly, if a player goes to another exit, or tries
to obstruct the opponent player, the opponent player can lock
the amazon out. In addition, if X comes to the gadget and Y
never comes, then if X exits at B, X takes two more moves
than if X exits at A. If Y comes to the gadget and X never
comes, then if Y exits at A, Y takes two more moves than if
Y exit at B. We can easily check these properties.

We now explain the main vertex gadgets corresponding to
the four types of vertices in Fig. 6, Fig. 7, Fig. 8 and Fig. 9.
It is easy to emulate a vertex in Fig. 7. We do this with two
paths, one for each player, on which player one needs one
more move to travel from entrance to exit than player two
does, effectively reversing which player is next to act. We
illustrate gadgets for branching vertices (Fig. 8) and joining
vertices (Fig. 9) in Fig. 15 and 16, respectively. We can use
the gadget in Fig. 15 for the start vertex (Fig. 6), too. We draw
paths for amazon X , who is expected to enter this gadget
first, as solid lines and paths for amazon Y as dotted lines.
Two amazons always come to the paired entrances at the same
time, otherwise an amazon being late will be locked out by
the opponent’s amazon at the top speed gadget just after the
entrance.

Branch gadget (Fig. 15). This gadget corresponds to a
vertex with an entering edge and two leaving edges (Fig. 8),
from which a player selects one of the leaving edges to fol-
low.Since we can adjust the number of moves amazons re-
quire along paths by bending these paths arbitrarily, we set
those from X’s entrances to X’s exits and those from Y ’s
entrances to Y ’s exits to be the same length. Because of the
cross gadget, X requires two more moves if X wants to take
Y ’s exit, therefore doing so will result in X being trapped by
Y in the type 2 top speed gadget. Thus player X cannot select
Y ’s path. Y must select the exit in the same direction that X
did, otherwise Y is locked out at the type 2 top speed gadget.
Note that if X slows down inside the gadget Y can lock X

Figure 15: Branch gadget.



Figure 16: Join gadget.

out in the cross gadget or any of the top speed gadgets. In
addition, we can use this gadget for the start vertex (Fig. 6).
We place Black and White amazons at the entrance so that the
Black amazon would enter the gadget first. The size of this
gadget is clearly independent of the input size.

Join gadget (Fig. 16). This gadget corresponds to a vertex
with two entering edges and a leaving edge (Fig. 9). Ama-
zons come to this gadget at the left or right entrance. If it is
the amazons’ first visit to this gadget, the gadget forces the
amazons to exit at the top center. If one player changes his
way and advances to the entrance not used, the opponent’s
amazon can trap him in a type 2 top speed gadget in front of
the entrance. At the second visit, the amazons cannot exit the
gadget, because they can use the left exit of the last top speed
gadget only once. Thus, after they pass the first top speed
gadget, they have to play Amazons only in the gadget. In this
case, Y will win by entering the region denoted by the gray
ball, which has larger space than that of the rest of this gad-
get, and closing the entrance to the ball. Y only has to wait
till X fills up the rest of the gadget and becomes locked out by
himself. This situation corresponds to that in GEOGRAPHY-
BP3 where it is player X’s turn and the adjacent vertices are
already marked. The size of this gadget is also independent
of the input size.

Using the gadgets described above we can transform any
bipartite planar graph — as described in the definition of
GEOGRAPHY-BP3 — into an Amazons position such that
the player to move wins the Geography game if and only if
the first player wins the Amazons game. First we embed the
given graph into a grid, taking space polynomially bounded
by the input graph’s size using a linear time orthogonal graph
drawing algorithm (e.g. [Kant, 1996]). Then we replace each
grid point which corresponds to a vertex or an edge with a
vertex gadget or a path gadget respectively. Each vertex is
incident to leaving edges and entering edges at some direc-
tions: north, south, west, and east. We can set the entrances
and exits of the vertex gadgets equal to the directions of these
edges by surrounding them with path gadgets. Further, we
sometimes have to use the cross gadget to connect exits to
the right entrances in the next gadget. Vertex gadgets and
the path gadgets surrounding them are drawn in a board of
constant size. An edge corresponding to a grid point can be

also drawn in a constant size, even if it includes a cross gad-
get. Thus, each grid point is drawn in a board of a constant
size, and the size of the Amazons game board is bounded by
a polynomial in the size of the input planar graph. To com-
plete the transformation function definition with respect to
the three properties stated in the previous proof, input words
that do not encode valid graphs are mapped into a fixed Ama-
zons position with two opposing amazons, Black to move and
White to win. From the above explanations, it is clear that the
run-time of the entire transformation is polynomial in the in-
put length. 2

4 Conclusion
We have presented two reductions which imply that determin-
ing the winner of generalized Amazons positions is PSPACE-
complete. The Hex reduction is appealing because it directly
relates two board game complexities. The Geography reduc-
tion, however, leads to a stronger result, because the transfor-
mation only generates Amazons positions with two opposing
amazons, whereas in the Hex reduction, the number of gener-
ated amazons cannot be bounded above by a constant.

As this paper was being finished we discovered that Robert
Hearn had simultaneously derived similar results [Hearn,
2005]. His reduction shows that generalized Amazons with
an unbounded number of amazons is PSPACE-complete.
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