
Build Order Optimization in StarCraft

David Churchill and Michael Buro
University of Alberta

Computing Science Department
Edmonton, Alberta, Canada

Abstract

In recent years, real-time strategy (RTS) games have gained
interest in the AI research community for their multitude of
challenging subproblems — such as collaborative pathfind-
ing, effective resource allocation and unit targeting, to name
a few. In this paper we consider the build order problem in
RTS games in which we need to find concurrent action se-
quences that, constrained by unit dependencies and resource
availability, create a certain number of units and structures in
the shortest possible time span. We present abstractions and
heuristics that speed up the search for approximative solu-
tions considerably in the game of StarCraft, and show the ef-
ficacy of our method by comparing its real-time performance
with that of professional StarCraft players.

Introduction
Automated planning, i.e. finding a sequence of actions lead-
ing from a start to a goal state, is a central problem in artifi-
cial intelligence research with many real-world applications.
For instance, the satisfiability problem can be considered a
planning problem (we need to assign values to n Boolean
variables so that a given formula evaluates to true) with ap-
plications to circuit verification, solving Rubik’s cube from a
given start state is a challenging pastime, and building sub-
marines when done inefficiently can easily squander hun-
dreds of millions of dollars. Most interesting planning prob-
lems in general are hard to solve algorithmically. Some, like
the halting problem for Turing machines, are even undecid-
able.

In this paper we consider a class of planning problems that
arises in a popular video game genre called real-time strat-
egy (RTS) games. In these games, which can be succinctly
described as war simulations, players instruct units in real-
time to gather resources, to build other units and structures,
to scout enemy locations, and to eventually destroy oppo-
nents’ units to win the game. In the opening phase of RTS
games players usually don’t interact with each other because
their starting locations are spread over large maps and player
visibility is limited to small regions around friendly units or
structures. The main sub-goals in this game phase are to es-
tablish a sufficient income flow by producing workers that
gather resources, to quickly build structures that are pre-
requisites for other structures or can produce combat units
to build a minimal force for defense or early attack, and to
send out scouts to explore the terrain and search for enemy

bases. The order in which units and structures are produced
is called a build order. RTS games are usually won by play-
ers who destroy opponents’ structures first. This goal can be
accomplished in various ways. For instance, one could try
to surprise (“rush”) the opponent by investing resources into
attack forces early in the game at the cost of delaying the
construction of structures that are important in later game
stages. If the opponent, on the other hand, invests in tech-
nological development and disregards defense, the rushing
player will win easily. Thus, at the highest adversarial strat-
egy level, the choice of initial build orders often decides the
game outcome. Therefore, like in chess, aspiring players
need to study and practice executing build orders and tai-
lor them to specific opponents. Avoiding the interesting and
ambitious task of selecting good build order goals, in this
paper we assume that they are given to us. Because act-
ing fast is very important in RTS games due to the fact that
players act asynchronously, what remains is finding action
sequences that accomplish the given goal while minimizing
the plan duration (makespan). This process is called build
order optimization.

The research on this subject that is reported here was mo-
tivated by the goal of creating strong AI systems for the
popular RTS game of StarCraft and the frustration of hard-
coding build orders for them. In the remainder of this paper
we first give a brief overview of related work on build order
optimization and our application domain StarCraft. Then we
describe our search algorithm, the underlying assumptions,
and the abstractions we use. In the following experimental
section we gauge the performance of our planner by com-
paring its build orders with those executed by professional
players. We finish the paper by conclusions and suggestions
for future work.

Background
The build order optimization problem can be described as a
constraint resource allocation problem with makespan min-
imization, which features concurrent actions. Because of
their practical relevance, problems of this kind have been
the subject of study for many years, predominantly in the
area of operations research.

(Buro and Kovarsky 2007) motivates research on build or-
der problems in the context of RTS games and proposes a
way of modeling them in PDDL, the language used in the
automated planning competitions. In (Kovarsky and Buro

2006) the issue of concurrent execution is studied in general
and efficient action ordering mechanisms are described for
the RTS game build order domain.

Existing techniques for build order planning in the RTS
game domain have focused mainly on the game Wargus (an
open source clone of Warcraft 2), which is much simpler
than StarCraft due to the limited number of possible ac-
tions and lower resource gathering complexity. Several of
these techniques rely heavily on means-end analysis (MEA)
scheduling. Given an initial state and a goal, MEA produces
a satisficing plan which is minimal in the number of actions
taken. MEA runs in linear time w.r.t. the number of actions
in a plan, so it is quite fast, but the makespans it produces
are often much longer than optimal.

(Chan et al. 2007b) employ MEA to generate build or-
der plans, followed by a heuristic rescheduling phase which
attempts to shorten the overall makespan. While they pro-
duce satisficing plans quite quickly, the plans are not op-
timal due to the complex nature of the rescheduling prob-
lem. In some cases they are able to beat makespans gen-
erated by human players, but do not mention the relative
skill level of these players. This technique is extended in
(Chan et al. 2007a) by incorporating best-first search in an
attempt to reduce makespans further by solving intermedi-
ate goals. They admit that their search algorithm is lacking
many optimizations, and their results show that this is not
only slower than their previous work but still cannot produce
significantly better solutions. (Branquinho and Lopes 2010)
extend further on these ideas by combining two new tech-
niques called MeaPop (MEA with partial order planning)
and Search and Learning A* (SLA*). These new results
improve on the makespans generated by MEA, but require
much more time to compute, bringing it outside the range of
real-time search. They are currently investigating ways of
improving the run-time of SLA*.

These techniques however are only being applied to War-
gus, with goals consisting of at most 5 types of resources.
Interesting plans in StarCraft may involve multiple instances
of up to 15 different units in a single goal and requiring far
more workers, increasing complexity dramatically.

StarCraft
RTS games are interesting application domains for AI re-
searchers, because state spaces are huge, actions are con-
current, and part of the game state is hidden from players
— and yet, human players still play much better than ma-
chines. To spark researchers’ interest in this game domain,
a series of RTS game AI competitions have been organized
in the past 6 years. In 2006-2009 a free software RTS game
engine was used (ORTS 2010), but since the advent of the
BWAPI library (BWAPI 2011), the competition focus has
switched to StarCraft (by Blizzard Entertainment), the most
popular RTS game in the world with over 10 million copies
sold. StarCraft has received over 50 game industry awards,
including over 20 “game of the year” awards. Some pro-
fessional players have reached celebrity status, and prize
money for tournaments total in the millions of dollars an-
nually.

As in most RTS games, each player starts with a num-
ber of worker units which gather resources such as minerals

and gas which are consumed by the player throughout the
game. Producing additional worker units early in the game
increases resource income and is typically how most profes-
sional players start their build orders. Once a suitable level
of income has been reached, players begin the construction
of additional structures and units which grow their military
strength. Each unit has a set of prerequisite resources and
units which the player must obtain before beginning their
construction. The graph obtained by listing all unit prereq-
uisites and eliminating transitive edges is called a tech tree.
Due to the complex balance of resource collection and unit
prerequisite construction, finding good build orders is a dif-
ficult task, a skill often taking professional players years to
develop.

A Build Order Planning Model for StarCraft
Build order planning in RTS games is concerned with find-
ing a sequence of actions which satisfies a goal with the
shortest makespan. It is our goal to use domain specific
knowledge to limit both the branching factor as well as depth
of search while maintaining optimality, resulting in a search
algorithm which can run in real-time in a StarCraft playing
agent.

In StarCraft, a player is limited to a finite number of re-
sources which they must both collect and produce through-
out the game. All consumables (minerals, gas) as well as
units (workers, fighters, buildings) are considered resources
for the purpose of search. An action in our search is one
which requires some type of resource, while producing an-
other (combat actions are out of our scope). Resources
which are used by actions can be of the forms Require, Bor-
row, Consume, and Produce (Branquinho and Lopes 2010).
Required resources, which are called prerequisites, are the
ones which must be present at the time of issuing an action.
A borrowed resource is one which is required, used for the
duration of an action, and returned once the action is com-
pleted. A consumed resource is one which is required, and
used up immediately upon issue. A produced resource is one
which is created upon completion of the action.

Each action a has the form a = (δ, r, b, c, p), with du-
ration δ (measured in game simulation frames), three sets
of preconditions r (required), b (borrowed), c (consumed),
and one set of produced items p. For example, in the Star-
Craft domain, the action a = “Produce Protoss Dragoon”
has δ = 600, r = {Cybernetics-Core}, b = {Gateway},
c = {125 minerals, 50 gas, 2 supply}, p = {1 Dragoon}.

States then take the form S = (t, R, P, I), where t is the
current game time (measured in frames), vector R holds the
state of each resource available (ex: 2 barracks available,
one currently borrowed until time X), vector P holds actions
in progress but are not yet completed (ex: supply depot will
finish at time X), and vector I holds worker income data
(ex: 8 gathering minerals, 3 gathering gas). Unlike some
implementations such as (Branquinho and Lopes 2010), I is
necessary due to abstractions made to facilitate search.

Abstractions
Without having access to the StarCraft game engine source
code, it was necessary to write a simulator to compute
state transitions. Several abstractions were made in order

2

to greatly reduce the complexity of the simulation and the
search space, while maintaining close to StarCraft-optimal
results. Note that any future use of the term ’optimal’ or
’optimality’ refers to optimality within these abstractions:

We abstract mineral and gas resource gathering by real
valued income rates of 0.045 minerals per worker per frame
and 0.07 gas per worker per frame. These values have been
determined empirically by analyzing professional games. In
reality, resource gathering is a process in which workers
spend a set amount of time gathering resources before re-
turning them to a base. Although we fixed income rates in
our experiments, they could be easily estimated during the
game. This abstraction greatly increases the speed of state
transition and resource look-ahead calculations. It also elim-
inates the need for “gather resource” type actions which typ-
ically dominate the complexity of build order optimization.
Due to this abstraction, we now consider minerals and gas
to be a special type of resource, whose “income level” data
is stored in state component I .

Once a refinery location has been built, a set number of
workers (3 in our experiments) will be sent to gather gas
from it. This abstraction eliminates the need for worker
re-assignment and greatly reduces search space, but in rare
cases is not “truly” optimal for a given goal.

Whenever a building is constructed, a constant of 4 sec-
onds (96 simulation frames) is added to the game state’s
time component. This is to simulate the time required for
a worker unit to move to a suitable building location within
an arbitrary environment, since individual map data is not
used in our search, but again could be estimated during the
game.

Algorithm
We use a depth-first branch and bound algorithm to perform
build order search. The algorithm takes a starting state S
as input and performs a depth-first recursive search on the
descendants of S in order to find a state which satisfies a
given goal G. This algorithm has the advantage of using
a linear amount of memory with respect to the maximum
search depth. Since this is an any-time algorithm we can
halt the search at any point and return the best solution so
far, which is an important feature for real-time applications.

Action Legality
In order to generate the children of a state, we must deter-
mine which actions are legal in this state. Intuitively, an ac-
tion is legal in state S if the simulation of the game starting
in time will eventually produce all required resources with-
out issuing any further actions. Given our abstractions, an
action is therefore legal in state S if and only if the following
conditions hold: 1) The prerequisites required or resources
borrowed are either currently available, or being created.
Example: a Barracks is under construction, so fighter units
will be trainable without any other actions being issued. 2)
The consumed resources required by the action are either
currently available or will be available at some point in the
future without any other actions being taken. Example: we
do not currently meet the amount of minerals required, how-
ever our workers will eventually gather the required amount
(assuming there is a worker gathering minerals).

Algorithm 1 Depth-First Branch & Bound
Require: goal G, state S, time limit t, bound b

1: procedure DFBB(S)
2: if TimeElapsed ≥ t then
3: return
4: end if
5: if S satisfies G then
6: b← min(b, St) . update bound
7: bestSolution← solutionPath(S)
8: else
9: while S has more children do

10: S′ ← S.nextChild
11: S′.parent← S
12: h← eval(S′) . heuristic evaluation
13: if S′

t + h < b then
14: DFBB(S′)
15: end if
16: end while
17: end if
18: end procedure

Fast Forwarding and State Transition
In general, RTS games allow the user to take no action at
any given state, resulting in a new state which increases the
internal game clock, possibly increasing resources and com-
pleting actions. This is problematic for efficient search al-
gorithms since it means that all actions (including the null
action) must be taken into consideration in each state of the
game. This results in a search depth which is linear not in
the number of actions taken, but in the makespan of our
solution, which is often quite high. In order to solve this
problem, we have implemented a fast-forwarding simulation
technique which eliminates the need for null actions.

In StarCraft, the time-optimal build order for any goal is
one in which actions are executed as soon as they are legal,
since hoarding resources cannot reduce the total makespan.
Although resource hoarding can be a vital strategy in late-
game combat, it is outside the scope of our planner. Let us
define the following functions:
S′ ←Sim(S, δ) - Simulate the natural progression of a

StarCraft game from a state S through δ time steps given
that no other actions are issued, resulting in a new state S′.
This simulation includes the gathering of resources (given
our economic abstraction) and the completion of durative
actions which have already been issued.
δ ←When(S,R) - Takes a state S and a set of resource

requirements R and returns the earliest time δ for which
Sim(S, δ) will contain R. This function is typically called
with action prerequisites to determine when the required re-
sources for an action a will be ready.
S′ ←Do(S, a) - Issue action a in state S assuming all re-

quired resources are available. The issuing of the action in-
volves subtracting the consume resources, updating actions
in progress and flagging borrowed resources in use. The re-
sulting state S′ is the state for which action a has just been
issued and has its full duration remaining.

S′ = Do(Sim(S,When(S, a)), a)

3

now defines our state transition function which returns the
state S′ for which action a has been issued.

Concurrent Actions and Action Subset Selection
A defining feature of RTS games is the ability to perform
concurrent actions. For example, if a player has a suffi-
cient amount of resources they may begin the concurrent
construction of several buildings as well as the training of
several units. In a general setting, this may cause an action-
space explosion because an super-exponential number of
possible actions sequences has to be considered. Even in
the common video game setting in which a game server se-
quentializes incoming concurrent player actions, it can be
co-NP hard to decide whether these actions when sequential-
ized in arbitrary order result in the same state (Buro and Ko-
varsky 2007). Fortunately, many RTS games, including Star-
Craft, have the property that simultaneously executable ac-
tions are independent of each other, i.e. action effects don’t
invalidate prerequisites of other actions: For any two actions
a, b to be executable concurrently in state S we must have
δ = When(S, prerequisites of a and b) = 0, which means
Sim(S, δ) = S. Because function Do(S, x) returns a state
in which precondition resources are decreased and postcon-
dition resources are increased, we have

Do(Do(S, a), b) = Do(S, a+ b)
= Do(Do(S, b), a),

where ’+’ indicates the concurrent issuing of two actions,
proving that the ordering of concurrent actions has no effect
on the resulting state. We can also apply this argument it-
eratively for subsets larger than two actions. Based on this
insight and the “earliest execution” property of optimal ac-
tion sequences we discussed in the previous subsection, we
can therefore impose a single ordering on simultaneous ac-
tions to to eliminate the need for iterating over all possible
sequences of concurrent actions from a given state.

Heuristics
Our depth-first branch and bound algorithm allows us to
prune nodes based on heuristic evaluations of the path length
left to our goal. Line 13 of Algorithm 1 shows that we
can prune a child node if its length so far plus its heuris-
tic evaluation is less than the upper bound. If our heuristic is
admissible, this guarantees that our computed solution will
be optimal. We use the following admissible lower-bound
heuristics to prune our search:

- LandmarkLowerBound(S,G) — StarCraft’s tech tree
imposes many prerequisites on actions. These actions are
known in the search literature as landmarks. Given this se-
quence of non-concurrent landmark actions, we sum the in-
dividual durations of actions not yet created to form an ad-
missible lower bound for our search.

- ResourceGoalBound(S,G) — Summing the total con-
sumed resource cost of units in a goal gives us a lower bound
on the resources required to construct the goal optimally.
Performing a quick search to determine the makespan of
producing only these resources is an admissible heuristic.

We can then take the maximum of these three heuristics as
our heuristic value h. The heuristic used as an upper bound

 340

 360

 380

 400

 420

 440

 460

 480

 500

 1 2 3 4 5 6 7 8 9

m
ak

es
pa

n
(s

ec
on

ds
)

log(number of nodes expanded) [base 10]

K=1
K=2

Figure 1: Makespan vs. nodes searched for late-game goal
of two carriers, comparing optimal search (K = 1) and
approximate search with macro actions (K = 2). Macro
actions make complex searches tractable while maintaining
close to optimal makespans.

for our search is TrivialPlan(S,G) — Given a state and a
goal, we simply take a random legal action from the goal
and issue it when it is possible. This guarantees that our
goal is met, but does not optimize for time. The length of
this plan is then used as an upper bound in our search.

Breadth Limiting
To limit the branching factor of our search, we impose up-
per bounds on certain actions. Ex: if our goal contains two
fighter units which are trained at a barracks, we know that we
need to produce at most two barracks. Since it is difficult to
pre-compute the optimal number of worker and supply units
for a given goal in this fashion, higher bounds are placed on
them to ensure optimal numbers can be produced.

Macro Actions
Macro actions (also called options in reinforcement learn-
ing) have proven useful in speeding up search and plan-
ning through incorporating domain specific knowledge (Iba
1989). While these actions can be learned (Stolle and Precup
2002), we have simply hand-created several macro actions
by inspecting build orders used by professional players. Our
macros all take the form of doubling existing actions which
are commonly executed in sequence. For example: profes-
sional players often build worker or fighter units in bunches,
rather than one at a time. By creating macro actions such
as these we cut the depth of search dramatically while main-
taining close to time-optimal makespans. To implement this,
for each action we associate a repetition valueK so that only
K actions in a row of this type are allowed. The effects of
introducing macro actions can be seen in Figure 1.

Experiments
Experiments were conducted to compare build orders used
by professional StarCraft players to those produced by our
planner. Although our planner is capable of planning for
each race, we limited our tests to Protoss players in order
to avoid any discrepancies caused by using build orders of
different races. 100 replays were chosen from various repos-
itories online, 35 of which feature professional players Bisu,

4

Algorithm 2 Compare Build Order
Require: BuildOrder B, TimeLimit t, Increment Time i

1: procedure COMPAREBUILDORDER(B,t,i)
2: S ← Initial StarCraft State
3: SearchPlan← DFBB(S,GetGoal(B, 0,∞),t)
4: if SearchPlan.timeElapsed ≤ t then
5: return MakeSpan(SearchPlan) / MakeSpan(B)
6: else
7: inc← i
8: SearchPlan← ∅
9: while inc ≤MakeSpan(B) do

10: IncPlan←DFBB(S,GetGoal(B,inc-i,inc),t)
11: if IncPlan.timeElapsed ≥ t then
12: return failure
13: else
14: SearchPlan.append(IncPlan)
15: S ← S.execute(IncPlan)
16: inc← inc + i
17: end if
18: end while
19: return MakeSpan(SearchPlan) / MakeSpan(B)
20: end if
21: end procedure

Stork, Kal, and White-Ra. The remaining replays were taken
from high level tournaments such as World Cyber Games.

The BWAPI StarCraft programming interface was used
to analyze and extract the actions performed by the profes-
sional players. Every 500 frames (21s) the build order im-
plemented by the player (from the start of the game) was
extracted and written to a file. Build orders were contin-
ually extracted until either 10000 frames (7m) had passed,
or until one of the player’s units had died. A total of 520
unique build orders were extract this way. We would like to
have used more data for further confidence, however the pro-
cess of finding quality replays and manually extracting the
data was quite time consuming. Though our planner is ca-
pable of planning from any state of the game, the beginning
stages were chosen as it was too difficult to extract meaning-
ful build orders from later points in the game due to the on-
going combat. To extract goals from professional build or-
ders, we construct a function GetGoal(B,ts,te) which given
a professional build order sequence B, a start time ts and
an end time te computes a goal which contains all resources
produced by actions issued in B between ts and te.

Tests were performed on each build order with the method
described in Algorithm 2 with both optimal (opt) and macro
action (app) search. First with t = 60s and i = 15s, sec-
ond with t = 120s and i = 30s. This incremental tactic is
believed to be similar in nature to how professionals re-plan
at various stages of play, however it is impossible be certain
without access to professionally labeled data sets (for which
none exist). We claim that build orders produced by this
system are “real-time” or “online” since they consume far
less CPU time than the durations of the makespans they pro-
duce. Agents can implement the current increment while it
plans the next. It should be noted that this experiment is in-
deed biased against the professional player, since they may

A) CPU time statistics for search without macro actions:

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24

opt(120) CPU time / makespan (%)

75th perc.: 0.08%
90th perc.: 1.50%

density
distribution

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24

opt(120) CPU time / makespan (%)

75th perc.: 13.06%
90th perc.: 17.86%

density
distribution

B) CPU time statistics for search with macro actions:

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24

app(120) CPU time / makespan (%)

75th perc.: 0.01%
90th perc.: 0.02%

density
distribution

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24

app(120) CPU time / makespan (%)

75th perc.: 8.18%
90th perc.: 9.99%

density
distribution

Figure 2: CPU time statistics for search without (A), and
with (B) macro actions at 120s increments. Shown are den-
sities and cumulative distributions of CPU time/makespan
ratios in % and percentiles for professional game data points
with player makespans 0..249s (left) and 250..500s (right).
E.g. the top-left graph indicates that 90% of the time, the
runtime is only 1.5% of the makespan, i.e. 98.5% of the CPU
time in the early game can be used for other tasks.

have changed their mind or re-planned at various stages of
their build order. It is however the best possible comparison
without having access to a professional player to implement
build orders during the experiment.

Figures 2 (time statistics) and 3 (makespan statistics) dis-
play the results of these experiments, from which we can
conclude our planner produces build orders with comparable
makespans while consuming few CPU resources. Results
for 60s incremental search were similar to 120s (with less
CPU usage) and were omitted for space. Results grouped by
makespan to show effects of more complex searches.

Use in StarCraft Playing Agents
Our planner (with macro actions) was incorporated into our
StarCraft playing agent (name removed, written in C++ with
BWAPI) which was previously a participant the 2010 AIIDE
StarCraft AI Competition. When given expert knowledge
goals, the agent was capable of planning to the goal in real
time, executing the build order, and subsequently defeating
some amateur level players, as well as the built-in StarCraft
computer AI. The specific results are omitted since for this
paper we are not concerned with the strength of the overall
agent, but with showing that our build order planning sys-
tem works in a real world competitive setting, something no
existing method has accomplished.

Conclusion and Future Work
In this paper we have presented heuristics and abstractions
that reduce the search effort for solving build order problems

5

A) Planning without macro actions, 120s increments, plan quality relative to professional player makespans [opt(120)]

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 50 100 150 200 250 300 350 400 450 500

op
t(

12
0)

 m
ak

es
pa

n
/ p

ro
 p

la
n

m
ak

es
pa

n

pro plan makespan (seconds)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

de
ns

ity
(x

)

di
st

ri
bu

tio
n(

x)

opt(120) makespan / pro makespan

75th perc.: 0.97

90th perc.: 1.00

density
distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

de
ns

ity
(x

)

di
st

ri
bu

tio
n(

x)

opt(120) makespan / pro makespan

75th perc.: 1.04

90th perc.: 1.09

density
distribution

B) Planning with macro actions, 120s increments, plan quality relative to professional player plan makespans [app(120)]

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 50 100 150 200 250 300 350 400 450 500

ap
p(

12
0)

 m
ak

es
pa

n
/ p

ro
 p

la
n

m
ak

es
pa

n

pro plan makespan (seconds)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

de
ns

ity
(x

)

di
st

ri
bu

tio
n(

x)

app(120) makespan / pro makespan

75th perc.: 1.00

90th perc.: 1.00

density
distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

de
ns

ity
(x

)

di
st

ri
bu

tio
n(

x)

app(120) makespan / pro makespan

75th perc.: 1.03

90th perc.: 1.08

density
distribution

Figure 3: Makespan statistics for search without (A) and with (B) macro actions. Goals extracted by looking ahead 120s
relative to professional player plan makespans. Shown are scatter plots of the makespan ratios (left), ratio densities, cumulative
distributions, and percentiles for early game scenarios (pro makespan 0..249s, center) and early-mid game scenarios (250..500s).
E.g. the top-middle graph indicates that 90% of the time, our planner produces makespans that match those of professionals.

in StarCraft significantly while producing near optimal plans
in real-time. We have shown macro actions, breadth limiting
techniques, income abstractions, and multiple lower bound
heuristics which reduce search spaces exponentially. A fast
forwarding approach was introduced which replaced the null
action, cut down on simulation time, and eliminated the need
to solve the subset action selection problem.

We have shown that with all of these techniques, our
planner is capable of producing plans in real-time which
are comparable to professional StarCraft players, many of
which have played the game for more than 10 years. We
have also incorporated our solution into an actual game-
playing agent which is capable of defeating non-trivial op-
ponents, eliminating the need for the tedious hard-coding of
build orders often present in similar agents.

In the future we plan to improve our techniques for deal-
ing with more complex search goals by learning macro ac-
tions, and adding analysis of income data to further restrict
search. Our abstractions (such as income) can also be im-
proved by adjusting various parameters to reflect game con-
text or specific environments. Our ultimate goal for the fu-
ture of our planning system is the incorporation of strategic
building placement and adversarial search. This would al-
low for goals such as defending a base or defeating enemy
forces, eliminating the need for expert knowledge goals to
be given to our planner, greatly improving the strength and
adaptability of a StarCraft playing agent.

References
Branquinho, A., and Lopes, C. 2010. Planning for resource
production in real-time strategy games based on partial order
planning, search and learning. In Systems Man and Cybernet-
ics (SMC), 2010 IEEE International Conference on, 4205–4211.
IEEE.
Buro, M., and Kovarsky, A. 2007. Concurrent action selection
with shared fluents. In AAAI Vancouver, Canada.
BWAPI. 2011. BWAPI: An API for interacting with StarCraft:
Broodwar. http://code.google.com/p/bwapi/.
Chan, H.; Fern, A.; Ray, S.; Wilson, N.; and Ventura, C. 2007a.
Extending online planning for resource production in real-time
strategy games with search.
Chan, H.; Fern, A.; Ray, S.; Wilson, N.; and Ventura, C. 2007b.
Online planning for resource production in real-time strategy
games. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, Providence, Rhode Island.
Iba, G. 1989. A heuristic approach to the discovery of macro-
operators. Machine Learning 3(4):285–317.
Kovarsky, A., and Buro, M. 2006. A first look at buildorder
optimization in real-time strategy games. In Proceedings of the
GameOn Conference, 18–22. Citeseer.
ORTS. 2010. ORTS - A Free Software RTS Game Engine.
http://skatgame.net/mburo/orts/.
Stolle, M., and Precup, D. 2002. Learning options in reinforce-
ment learning. Abstraction, Reformulation, and Approximation
212–223.

6

