Automatically Solving Deduction Games via
Symbolic Execution, Model Counting, and Entropy Maximization

Mara Downing, Chris Thompson, Lucas Bang
{mdowning, cbthompson, lbang} @hmc.edu
Harvey Mudd College
301 Platt Blvd.

Claremont, California 91711

Abstract

We present a technique for automatically solving deduc-
tion games in which a player makes repeated queries
to a running implementation of the game and receives
a game outcome, with the goal of discovering an un-
known secret value. By making multiple queries, a
player iteratively reduces the uncertainty about the se-
cret until it is known. We show how to synthesize player
queries using static program analysis, model-counting,
and information theory. The system we describe au-
tomatically solves deduction games implemented in a
Python-based game specification language.

1 Introduction

Deduction games are a form of puzzle in which a player
attempts to discover a game solution using logical reason-
ing. We consider deduction games that proceed in a series
of game rounds in which a player makes a query and is pro-
vided with an outcome corresponding to that query which
reveals some information about an unknown secret value.
The player’s goal is to discover the secret. Popular games
that fall into this category are Mastermind (crack a secret
code using information about how similar a query is to the
code) and Battleship (find the locations of ships by querying
coordinates and learning if they are a ‘hit” or ‘miss’).

In this paper, we present a method of automatically syn-
thesizing queries to solve deduction games. Our approach
uses static code analysis, namely symbolic execution, to ana-
lyze the implementation of a game in order to extract a set of
constraints that model the behavior of the game. These con-
straints are used in a process called ‘model counting’, which
is leveraged to compute probability distributions relating
player queries to game outcomes. The probability distribu-
tion functions determine an information gain objective func-
tion based on Shannon entropy, which, when maximized,
yields the optimal play for the current game round. We im-
plemented a domain specific language in which to write de-
duction games, enabling our static analysis phase. Our ex-
periments demonstrate the effectiveness of our approach on
a set of deduction games.

Copyright (©) 2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

Source Code

of Game Outcome
L Conbtrdlnta
- / \ Model
Symbo.hc Counting
Execution \ Knowledge / #3(s,)
About Secret
#(s) Outcome
Game / Probabilities
Outcome plola)
o
\ Game Optimal Entropy
Instance <¢—— Query -e—— Maximization
G(g*) 7 max, H(q)

Figure 1: Overall strategy synthesis approach.

2 Automatically Solving Deduction Games

We give an overview of our approach, including the defi-
nitions for our model of deduction games, the steps of auto-
matically solving a game, and the corresponding algorithms.
We follow with an example that illuminates each step.

2.1 Components of a Deduction Game

A deduction game G is a tuple: a secret set, a query
set, an outcome set, and game rules, respectively, denoted

(S,Q,0,R).

Secret. The goal of a deduction game is to discover a secret
value s among a set of all potential secret values S.

Player Queries. A player makes repeated queries g over the
course of a game from among a set of possible queries Q.

Outcomes. After each query, the outcome o, from among a
set of possible outcomes O, of that game round is revealed.

Game Rules. The outcome of a game round is made accord-
ing to a deterministic game rule depending on the player
query and the secret. We can think of the game rules as a
function R : @ x .S — O. We assume that the player knows
the rules (code) of the game and the only unknown is s.

2.2 Solution Synthesis Steps and Components

We now describe our solution technique. The reader may
find it helpful to refer to Figure 1 along with this discussion.

1. System Input. Source code for a game is provided that
specifies (a) the possible secret values and (b) the relation-
ship between player queries, the secret value, and the game
outcome. We assume this relationship is specified by a de-
terministic program. (Our domain specific language for de-
scribing games is given in Section 3.1.)

2. Static Code Analysis. We implemented symbolic exe-
cution, a form of static program analysis (King 1976), for
our game language (see Section 3.2). Symbolic execution
returns a set of constraints ®(s, ¢), one per game outcome,
encode the relationship between input queries and secret val-
ues corresponding to that outcome. Since the game encodes
which possible values the secret may take on, this symbolic
execution phase also results in a logical constraint capturing
the initial “knowledge” about the secret £(s).

3. Probabilities via Model Counting. We seek to compute
probability distributions, p(o|q), the probability that a play
will result in outcome o given query q. It is sufficient to com-
pute the number of secrets s that satisfy both the player’s
current knowledge about the secret x(s) and each outcome
constraint ¢,, all as a function of ¢, denoted #[p, Ak(s)](q).

Counting solutions to constraints is known as model
counting and various tools exist for accomplishing this
task (Aydin, Bang, and Bultan 2015; Loera et al. 2004;
Luu et al. 2014). Here, we used the BARVINOK library, an
implementation of Barvinok’s polynomial-time lattice point
enumeration algorithm. BARVINOK performs model count-
ing by representing a constraint C' on variables V' as sym-
bolic polytopes P C R™. Barvinok’s algorithm generates a
multivariate piecewise polynomial that evaluates to the num-
ber of assignments of integer values to V' that lie in the inte-
rior of () (Barvinok 1994; Verdoolaege 2017).

Now, the probability of an outcome given a player query
is easily computed using these model counts: p(olg) =
#[do N K(8)](q)/#x(s), where #£(s) is the number of se-
crets consistent with knowledge x(s).

4. Entropy Maximization. Using p(o|q) from the previous
step, we compute the conditional Shannon entropy (Shannon
1948; Cover and Thomas 2006) of game outcome O given
player query (). We interpret the conditional Shannon en-
tropy as the amount of information that the player expects to
gain by receiving outcome o after making query g:

H(olg) = —>_ p(olg) log p(olq)

o€O

We then maximize H (o|q) to find a query ¢* with the highest
expected information gain about the secret s:

* = argmax H(o
q gmax (olq)

Note that, in general, H(o|q) is a multi-dimensional non-
convex objective function; locating the true maximum value
poses a challenge. Thus, we settle for an approach that
searches the query space for the best ¢g* it can find. Recall
that Barvinok represents a constraint C' on variables (s, q)
as symbolic polytopes P C R™. The result of model count-
ing is a piecewise polynomial function whose domain is a

disjunction of polytope chambers @ C R™ represented by
linear half-spaces in R™. We then randomly sample from Q
and evaluate 1 (o|q), taking ¢* to the maximizing sample.

5. Play Query and Update Knowledge. Query ¢* is played
producing outcome o according to the game rules. Since
each o is associated with a constraint on ¢ and s, the player
can update the knowledge about the secret as the conjunc-
tion of the current knowledge x(s) with the corresponding
observation constraint, replacing the query variable ¢ with
the query that was actually played, ¢*, denoted ¢,[q — ¢*]:

K(8) < Kk(8) A dolg — ¢7]

7. Repeat Until No Information Gain Is Possible. This
process repeats in a loop until there are no more queries that
can result in positive entropy (information gain).

2.3 Algorithms

The algorithms that specify the behavior of the game and
solution synthesis are given here. The process by which en-
tropy is computed is factored into its own procedure.

Algorithm 1 RUNGAME
Input: game G = (S, Q, O, R)
1: procedure RUNGAME(P)
s < CHOOSESECRET(S)
while true do
q + PLAYERQUERY
if WINNINGCONDITION(g, s) then
PLAYERWINS
else
0+ R(q, s)
REVEALTOPLAYER(0)

LRI NEDD

Algorithm 2 SOLVEGAME

Input: game program, P.

P is the code for game G = (S, Q, O, R).
Output: queries g* to solve game.

1: procedure SOLVEGAME(P)
(P, k(s)) + SYMBOLICEXECUTION(P)
H(o|q) + COMPUTEENTROPY(®, k(s))
while 3¢[7(o|q) > 0] do

¢° argmax,eq H(olq)

0 < PLAYQUERY(q")

K(s) K(5) A dolg > q"]

H(o|q) <~ COMPUTEENTROPY (D, £(s))

Algorithm 3 COMPUTEENTROPY
Input: outcome constraints ®, knowledge «(s).
Output: Entropy function #H(o|q).

1: procedure COMPUTEENTROPY (D, k(s))
: for each ¢, € ® do
#[o A K(8)](¢) < BARVINOK (o A K(5))
#[k(s)] + BARVINOK(k(s))
for each o € O do
p(olq) = #[do A K(s)](q)/#£(s)
H(olq) = — > oeo P(0lq) log p(olq)
return H(o|q)

e A

function rules(q, s)
if s < g[0]
return "Low"
else if g[0] <= s <= g[l
return "Middle"
else

return "High"

function chooseSecret (min, max)

return uniformRandInt (min, max)

27

Entropy
1.2

0.8
I0.4
0.0

a1

function Low-Middle-High (min, max)
s = chooseSecret (min, max)
while (true)
g = playerInput
if gql0] == s == g[1]
return "You win!"
else
o = rules(qg,s)

print o

main:
Low-Middle-High (1,27)

Figure 2: Pseudocode for the LOW-MIDDLE-HIGH game.

2.4 Example Game: Low-Middle-High

We now walk through the steps just outlined for a simple
game that touches on the main points of our approach.

Game Description. Consider a game called LOW-MIDDLE-
HIGH in which the secret is an integer within a known
range: 1 < s < 27. A player proposes pairs of integers
g = (qo0,q1), which we interpret as a lower and upper
bound of an integer interval. The player is informed of the
value of the secret s relative to the query. That is, the game
responds with outcomes according to the rules function
in the pseudocode of Figure 2: “Low” if s < ¢qo, “Middle”
if g0 < s < q1, and “High” if neither of those cases apply.

Intuitive Solution Strategy. One might reason that the best
strategy for playing this game is to choose (qo, q1) at each
round such that the search space is cut into equal thirds
every time. Indeed, this is the optimal strategy. We will walk
through how our approach synthesizes this solution.

Game Parameters. For this game, the secret set is
S = {s: 1 < s < 27}, the set of potential queries is
Q = Z x Z, and the set of outcomes is O = { ‘Low’, ‘Mid-
dle’, ‘High’ }, which we abbreviate to O = {L, M, H}.

Static Code Analysis. Performing symbolic execution (de-
tailed in Section 3.2) of the rules function results in the
following outcome constraints. For this simple example, one
can easily see how the constraints correspond to the function
that implements the rules of the game.

or=5<q, OmMm=q<s<q, Pa=s5>q

40

Figure 3: Entropy function (contour plot), #(o|(qo, ¢1)), for
the interval game where 1 < s < 27. Maximum occurs at
(g0, q1) = (10, 18), indicated by the cross-hair.

Conditional Outcome Probabilities via Model Counting.
We now wish to compute the probabilities of each outcome
as a function of the player query. Consider constraint ¢y,.
There are two non-trivial cases. If gg > 27, then there are
27 secret values consistent with the knowledge «(s) = 1 <
s < 27. On the other hand, if 1 < ¢¢ < 27, then there are
go — 1 solutions for k(s), namely, s € {1,...,go — 1}. For
any other values of g, «(s) is unsatisfiable, so there 0 solu-
tions. Reasoning about #¢(qo, q1) is symmetrically sim-
ilar, and #¢as(qo, g1) is slightly more complicated, giving
us the three piecewise counting functions shown here.

27 qo > 27
#oL(go,q1) =g —1 1<qo <27
0 otherwise
27 q1 <0
#6u(q0,q1) = (27T—q1 0<q1 <27
0 otherwise
27 Qo <1Aq >27
28 — qo 1<qo<2TAq > 27
#om(qo, 1) =4 a1 —qo+1 g <1Ag <q <27
q1 Qo <1AN0<q1 <27
0 otherwise

These counting functions are produced automatically us-
ing the Barvinok library. With these counting functions, we
compute the probability of each outcome, o, conditioned on
the player’s query: p(olq) = #[¢o A (s)l(q) /#+(s).

Optimal Query via Entropy Maximization. From the out-
come probabilities we compute the Shannon entropy using

p(Llgo, 1), p(M|qo, ¢1), and p(H|qo, q1) by plugging in the
appropriate expressions:

p(0lqo, q1) log p(0lqo, ¢1)

Hlolgo,q1) =~ >

o€{L,M,H}

A contour plot of the LOW-MIDDLE-HIGH entropy ob-
jective function H as a function of (g, g1) is given in Fig-
ure 3. The point in this space that maximizes H is the query

" = argmax H(o|(q0, ¢1)) = (10,18).
This aligns with our earlier intuition that the best strategy is
to split the search space in thirds during each round.

Knowledge Update Based on Game Outcome. The player
then learns the outcome o of the game when played with
query ¢* according to the rules: o = R(¢*,s). In our ex-
ample, a player can learn that 1 < s < 9 if the outcome
is “Low”, 10 < s < 18 if the outcome is “Middle”, or
19 < s < 27 if the outcome is “High”.

In our running example, if the player sees outcome o =
“Low” after playing query ¢* = (10, 18), the update is:

K(s) « 1<s<27A¢L[(qo,q1) — (10,18)]
= 1<s<2TAs<10
= 1<s<9
We have demonstrated that entropy maximization based
on the constraints generated by static analysis of the game
code produces the first step of the optimal ternary search.
This is a more general principle that applies to more complex
games, as seen in our experimental results (Section 4).

Query Until Information Is Exhausted. Given updated
k(s), the process repeats, starting with model counting. Note
that the static code analysis phase is not repeated, as the
symbolic execution constraints sufficiently capture the be-
havior of the game. Supposing that the knowledge is updated
as described in the previous step, the next round of query
synthesis using model counting and entropy maximization
results in ¢* = (4,6). This continues until there are no
queries with positive information gain, i.e. Vg[H > 0].

3 Implementation

We implemented the approach of Section 2 by implementing
Algorithms 1, 2, and 3 in Python and interfacing with Z3 for
constraint satisfiability checking during symbolic execution
and Barvinok for model counting. There are two implemen-
tation aspects that deserve further explication, described in
this section: our domain specific language for encoding de-
duction games and how we perform symbolic execution.

3.1 Domain Specific Language

Our approach relies on extracting a logical representation of
the game from the source code of the game. In order to facil-
itate this, we designed a small language for encoding games
that strikes a balance between analyzability and expressive-
ness. The language has features that we found necessary to
express deduction games but is simple enough that writing
static analysis routines and interfacing with the Z3 constraint

Program
Stmt

List(Stmt)

Stmt; Stmt

If (Exp, Stmt)
While(Exp, Stmt)
Assign(ld, Exp)
ArrayStore(Exp, Stmt)
Return(Exp)

Exp := BoolExp

IntExp

ArrayDeclare(ld, IntExp)
ArrayAccess(ld, IntExp)
Function(List(ld), Stmt)
FunctionCall(ld, List(Exp))
BoolExp := true | false
And(BoolExp, BoolExp)
Or(BoolExp, BoolExp)
Not(BoolExp)
Less(IntExp, IntExp)
Equal(IntExp, IntExp)
IntExp := IntConst

Plus(IntExp, IntExp)
Times(IntConst, IntExp)
IntConst = c€Z

Figure 4: Domain specific language abstract grammar for
specifying deduction games, supporting basic imperative
constructs, Boolean and integer operations, arrays, and func-
tions with the standard expected semantics.

solver under the hood is straightforward. The interpreter of
our language is written in Python and supports basic imper-
ative programming features including Boolean and integer
operations, control and iteration structures, functions, and
arrays. See Figure 4 for the abstract grammar.

3.2 Symbolic Execution

We extract a symbolic model of the game in the form of a
set of outcome constraints using symbolic execution. Sym-
bolic execution (King 1976) is a popular static code analysis
technique by which a program is executed on symbolic (as
opposed to concrete) input values that represent all possible
concrete values. In the limit, symbolic execution explores all
feasible paths of program execution.

Symbolically executing a program yields a set of path
constraints ¥ = {11,1,... 1, }. Each v; is a conjunc-
tion of constraints on the symbolic inputs that characterize
all concrete inputs that would cause a path to be followed.
All the 1; are disjoint. Whenever symbolic execution hits
a branch condition ¢, both branches are explored and the
constraint is updated: ¥ <— % A c in the true branch and
1) <— ¥ A —cin the false branch. Path constraint satisfiability
is checked using constraint solvers such as Z3 (De Moura
and Bjgrner 2008). If a path constraint is found to be unsat-
isfiable, that path pruned from the symbolic exploration.

We treat the secret value s and the input query ¢ as sym-
bolic, and we associate each path constraint with the corre-
sponding game outcome. Thus, during symbolic execution,
we track the return values of functions that implement the
rules of the game, and each 1); is associated with a concrete

function rules(q,s)
for(i = 0; 1 < 3; i++)
if(qli] !'= s[i])
return i

return i

Figure 5: Code snippet for example of symbolic execution.

game outcome o;. Path constraints that result in the same
outcome are combined using disjunction to produce the out-
come constraints:

¢o = \/ d%

0=0;

To deal with loops in symbolic execution, a bound is typi-
cally enforced on exploration depth. In our setting, we found
that we did not have to artificially bound symbolic execu-
tion, and the path constraints we generate correspond to a
complete characterization of the programmed game rules.

Symbolic Execution Example. Consider a simple game in
which a player attempts to learn a secret integer represented
as an array of digits between 0 and 9. The player proposes an
integer query and it is compared digit by digit to the secret.
The outcome of the game is the length of the matching pre-
fix. The logic of the game outcome is modeled by the pseu-
docode of Figure 5. For this simple example, we assume the
query and secret are 3 digits each.

We model the arrays g and s as arrays of symbolic in-
tegers: [qo, q1,q2] and [sg, 1, S2]. Symbolically executing
the code results in the symbolic execution tree of Figure 6.
Path constraints ¢ are maintained during symbolic execu-
tion, but for simplicity we only show the path constraints
that are obtained at the leaves of the tree. First, ¢ is set to
0, and then we symbolically explore both branches of the
condition ¢ < 3: the constraints ¢ = 0 A =(¢ < 3) and
i = 0 A4 < 3 are both sent to the Z3 theorem prover
for satisfiability checking. The false branch is determined
to be unsatisfiable and so is not explored. The true branch is
satisfiable and so exploration continues into the loop. Next,
constraints for both possible branches of execution of the if-
statement are sent to Z3: i = 0 A ¢ < 3 A —=(qo # so) and
i =0A17 < 3Aqy # so. Both branches are determined to
be satisfiable. The true branch executes a return statement,
which returns outcome o = 0, so we have ¢q : o # sg. In
the other branch, ¢ is incremented and exploration continued,
resulting in the constraints illustrated in the tree.

4 Experiments

We ran our implementation on several variants of well-
known logical deduction games. We give a brief description
of each game, followed by the experimental results.

4.1 Logical Deduction Games

We coded each of the following games in the domain
specific language of Section 3.1.

return 0

%0 : o # So

return 1
b1 :qo = So
Aq# 81

return 2

b2t o = S0
ANq=s1
A g2 # 52

return 3

31 qo = So
ANqg =$1
A g2 = S2

Figure 6: Symbolic Execution Tree of Figure 5.

Low-Middle-High. This is the example game of Section 2.

Mastermind. The player tries to find a secret code consist-
ing of 4 colored pegs, where each peg can be one of 6 colors,
by proposing their own 4-color code. The game responds by
giving a number of red flags (the number of pegs in the cor-
rect positions with the correct color) and a number of white
flags (the number of pegs with correct colors but in the in-
correct positions) (Kooi 2005).

Simple Mastermind. This is a simplified version of Master-
mind where only red flags are revealed.

Password Cracker. The player guesses a list of integers
from O to 9 to try to discover a secret password consisting
of digits. The game responds by giving the length of the pre-
fix of the user query which matches the secret. This game
models a hacker attempting to learn a password or key using
a segment oracle attack (Bang et al. 2016).

Counterfeit Coin. This is the classic counterfeit coin prob-
lem. There are n coins that look identical, one of which is ei-
ther slightly lighter or heavier than the others. The player can
place any number of coins on either side of a scale, which
tilts left, tilts right, or balances (Smith 1947).

Sushi. A player is attempting to determine the sushi pref-

Table 1: Experimental results showing solving time, number of rounds, symbolic execution time, number of path constraints
||, number of observation constraints |¢|, size of the query space |Q)|, and size of the secret search space |S].

Average Average Symbolic
Game Details Solve Time (s) | # Rounds | Exec. Time (s) | |¥| | |®] | |Q| |S]
Counterfeit Coin 6 coins 33.182 2.44 3.278 36 3 729 12
Counterfeit Coin 9 coins 2072.795 3 7.146 54 3 8952 18
Mastermind 6 colors 4 pegs | 8185.924 3.8 38.414 209 | 14 | 1296 1296
Simple Mastermind | 6 colors 4 pegs | 248.278 6.2 0.77 16 |5 1296 1296
Low-Middle-High | from 1 to 10 2.727 5 0.033 3 3 81 45
Low-Middle-High from 1 to 50 24.643 10.1 0.032 3 3 2401 1225
Low-Middle-High from 1 to 100 89.158 11.9 0.032 3 3 9801 4950
Sushi 5 options 188.955 6.933 2.381 20 2 25 120
Password Cracker 4 digits 27.235 15.75 0.15 5 5 10000 10000
Password Cracker 6 digits 501.127 28.55 0.246 7 7 1000000 | 1000000
Horse Race 5 horses 3 lanes | 599.923 3.5 68.132 60 6 125 120
Battleship 8x8 grid 17.984 11.333 0.115 4 2 64 96
Battleship 12x12 grid 123.38 27.4 0.116 4 2 144 240

erences of a customer out of 5 possible types. The player
offers two sushi dishes at a time. The customer tries each
of them and says which of the two they prefer. The player
hopes to discover the complete ranking of sushi dishes for
the customer. This is a gamified version of the ranking via
pairwise comparison problem (Jamieson and Nowak 2011)
and is similar to a machine learning task in the existing lit-
erature (Pu, Kaelbling, and Solar-Lezama 2017).

Horse Race. A player is attempting to discover the fastest 3
horses from among 5 horses. The player is allowed to race
3 horses at a time and finds out the race winner. This is a
variation of a Google interview question (Talwalkar 2017).

Simple Battleship. The player guesses two integers, coor-
dinates in a grid of cells, attempting to sink a ship that takes
up 3 vertically or horizontally adjacent cells. The game re-
sponds by saying whether the player has hit the hidden ship
at those coordinates. This is a simplified version of the pop-
ular Battleship game, in which there are 5 ships of different
sizes (J. M. Meuffels and den Hertog 2010).

4.2 Experimental Results

The results of running our automatic game solving approach
are summarized in Table 1. We solved each game 5 times
for 5 different, randomly chosen secret values. We report
the number of path conditions |¥|, number of possible game
outcomes per round, or equivalently, the number of observa-
tion constraints |®| after disjunctive merging (Section 3.2),
size of the query space |Q|, and size of the secret search
space |.S|. We also report averages of the symbolic execution
time, game solving time, and number of rounds required to
solve the game.

The three most challenging games were Mastermind,
Counter Coin, and Horse Race, taking approximately 140
minutes, 34 minutes, and 10 minutes respectively. We ob-
serve that the time required for static analysis is always un-
der 1 minute, except in the case of Horse Race, which is
barely over a minute. The most expensive operations of the

game solving phase are the model counting done by BARVI-
NOK and then maximizing the resulting entropy function.

5 Related Work

Our approach to solving deduction games is strongly in-
fluenced by work in the intersection of computer secu-
rity, software verification, and quantitative information flow,
where the goal is to show that a software systems is poten-
tially vulnerable to attackers by synthesizing inputs that re-
veal sensitive information. Often, these scenarios are framed
as a game between an adversary and a computer system.
These works typically make use of static code analysis,
constraint solving, model counting, and information the-
ory (Klebanov 2014; Phan et al. 2017; Saha et al. 2018;
Clarkson, Myers, and Schneider 2005). This paper is an at-
tempt to port those techniques to the world of games.

There is substantial work focused individually on two of
the games we consider, Mastermind and variants (Goodrich
2012; Kooi 2005; Maestro-Montojo, Salcedo-Sanz, and
Merelo Guervs 2014) and scale and coin problems (Kho-
vanova 2013; M. Chudnov 2015). A 2017 paper discusses
synthesizing human-interpretable strategies for the Nono-
gram Game (Butler, Torlak, and Popovic 2017). There is an
interesting approach that uses training data and neural net-
works along with entropy maximization (Pu, Kaelbling, and
Solar-Lezama 2017).

The most closely related work is that of COde-BReaking
game Analyzer (COBRA), which relies on a logical speci-
fication of a game and uses constraint solvers and entropy
maximization to sol ve code-breaking games (Klimos and
Kucera 2015). The main difference with our approach is that
we analyze the source code of a game rather than an en-
coding in logic, and we generate symbolic model counting
expressions, whereas COBRA enumerates all constraint so-
lutions in order to count models.

6 Conclusions and Future Work

We demonstrated that our approach is effective at auto-
matically solving deduction games using static code anal-
ysis, model counting, and entropy maximization. Efficiency
and scalability of the approach can be improved. Because
evalautions of the entropy function for different queries are
independent, we intend to investigate approaches that lever-
age parallel objective function evaluation. In addition, be-
cause metaheuristic techniques such as genetic algorithms
have shown success in solving specific games, we hope to
explore their use within our framework. The main takeaway
of this work is that given only the code that implements a
deduction game, we are able to automatically solve it.

Acknowledgments. This research was supported by NSF
award #1659805: Harvey Mudd Research Experience for
Undergraduates Site in Computer Systems.

References

Aydin, A.; Bang, L.; and Bultan, T. 2015. Automata-based
model counting for string constraints. In Proceedings of the
27th International Conference on Computer Aided Verifica-
tion (CAV), 255-272.

Bang, L.; Aydin, A.; Phan, Q.-S.; Pasareanu, C. S.; and Bul-
tan, T. 2016. String analysis for side channels with seg-
mented oracles. In Proc. of the 24th ACM SIGSOFT Inter-
national Symp. on the Foundations of Software Engineering.

Barvinok, A. I. 1994. A polynomial time algorithm for
counting integral points in polyhedra when the dimension is
fixed. Math. Oper. Res. 19(4):769-779.

Butler, E.; Torlak, E.; and Popovic, Z. 2017. Synthesizing
interpretable strategies for solving puzzle games. In Pro-
ceedings of the International Conference on the Foundations
of Digital Games, FDG 2017, Hyannis, MA, USA, August
14-17, 2017, 10:1-10:10.

Clarkson, M. R.; Myers, A. C.; and Schneider, F. B. 2005.
Belief in information flow. In Proceedings of the 18th IEEE
Workshop on Computer Security Foundations, CSFW ’05,
31-45. Washington, DC, USA: IEEE Computer Society.

Cover, T. M., and Thomas, J. A. 2006. Elements of Informa-
tion Theory (Wiley Series in Telecommunications and Signal
Processing). Wiley-Interscience.

De Moura, L., and Bjgrner, N. 2008. Z3: an efficient SMT
solver. In Proceedings of the 14th international conference
on Tools and algorithms for the construction and analysis of

systems, TACAS’08, 337-340.

Goodrich, M. T. 2012. Learning character strings via mas-
termind queries, with a case study involving mtdna. /EEE
Trans. Information Theory 58(11):6726-6736.

J. M. Meuffels, W., and den Hertog, D. 2010. Puzzle solving
the battleship puzzle as an integer programming problem.
Journal of Financial Stability 10:156-162.

Jamieson, K. G., and Nowak, R. D. 2011. Active ranking
using pairwise comparisons. In Advances in Neural Infor-
mation Processing Systems 24: 25th Annual Conference on

Neural Information Processing Systems 201 1. Proceedings
of a meeting held 12-14 December 2011, Granada, Spain.

Khovanova, T. 2013. Parallel weighings. arXiv preprint
arXiv:1310.7268.

King, J. C. 1976. Symbolic execution and program testing.
Commun. ACM 19(7):385-394.

Klebanov, V. 2014. Precise quantitative information flow: a
symbolic approach. Theor. Comput. Sci. 538:124-139.

Klimos, M., and Kucera, A. 2015. Cobra: A tool for solv-
ing general deductive games. In Logic for Programming,
Artificial Intelligence, and Reasoning - 20th International
Conference, November 24-28, 31-47.

Kooi, B. P. 2005. Yet another mastermind strategy. /CGA
Journal 28(1):13-20.

Loera, J. A. D.; Hemmecke, R.; Tauzer, J.; and Yoshida,
R. 2004. Effective lattice point counting in rational convex
polytopes. Journal of Symbolic Computation 38(4):1273 —
1302. Symbolic Computation in Algebra and Geometry.

Luu, L.; Shinde, S.; Saxena, P.; and Demsky, B. 2014. A
model counter for constraints over unbounded strings. In
Proceedings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 57.

M. Chudnov, A. 2015. Weighing algorithms of classification
and identification of situations. Discrete Mathematics and
Applications 25.

Maestro-Montojo, J.; Salcedo-Sanz, S.; and Merelo Guervs,
J. 2014. New solver and optimal anticipation strategies
design based on evolutionary computation for the game of
mastermind. Evolutionary Intelligence 6.

Phan, Q.; Bang, L.; Pasareanu, C. S.; Malacaria, P.; and Bul-
tan, T. 2017. Synthesis of adaptive side-channel attacks.
IACR Cryptology ePrint Archive 2017:401.

Pu, Y.; Kaelbling, L. P.; and Solar-Lezama, A. 2017. Learn-
ing to acquire information. In Proceedings of the Thirty-
Third Conference on Uncertainty in Artificial Intelligence,
UAI 2017, Sydney, Australia, August 11-15, 2017.

Saha, S.; Kadron, I. B.; Eiers, W.; Bang, L.; and Bultan,
T. 2018. Attack synthesis for strings using meta-heuristics.
ACM SIGSOFT Software Engineering Notes 43(4):56.
Shannon, C. 1948. A mathematical theory of communica-
tion. Bell System Technical Journal 27:379-423, 623-656.
Smith, C. A. B. 1947. The counterfeit coin problem. The
Mathematical Gazette 31(293):31-39.

Talwalkar, P. 2017. Can you solve the 25 horses puzzle?
google interview question.

Verdoolaege, S. 2017. The Barvinok model counter.

